改进了LDPC码的线性规划译码和最小距离限制

D. Burshtein, I. Goldenberg
{"title":"改进了LDPC码的线性规划译码和最小距离限制","authors":"D. Burshtein, I. Goldenberg","doi":"10.1109/CIG.2010.5592887","DOIUrl":null,"url":null,"abstract":"We propose a technique for improving LP decoding, based on the merging of check nodes. This technique can be applied to standard as well as generalized LDPC codes. Furthermore, we show how a recently-discovered linear-complexity LP decoder can be used to derive non-trivial lower bounds on the minimum distance of specific LDPC codes, with complexity that exhibits quadratic growth with respect to the block length. This bound can be refined using the check node merging technique. The lower bound on the minimum distance is shown to be an upper bound on the fractional distance of the code.","PeriodicalId":354925,"journal":{"name":"2010 IEEE Information Theory Workshop","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Improved linear programming decoding and bounds on the minimum distance of LDPC codes\",\"authors\":\"D. Burshtein, I. Goldenberg\",\"doi\":\"10.1109/CIG.2010.5592887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a technique for improving LP decoding, based on the merging of check nodes. This technique can be applied to standard as well as generalized LDPC codes. Furthermore, we show how a recently-discovered linear-complexity LP decoder can be used to derive non-trivial lower bounds on the minimum distance of specific LDPC codes, with complexity that exhibits quadratic growth with respect to the block length. This bound can be refined using the check node merging technique. The lower bound on the minimum distance is shown to be an upper bound on the fractional distance of the code.\",\"PeriodicalId\":354925,\"journal\":{\"name\":\"2010 IEEE Information Theory Workshop\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Information Theory Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2010.5592887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Information Theory Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2010.5592887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种基于校验节点归并的LP译码改进技术。该技术既可以应用于标准LDPC码,也可以应用于广义LDPC码。此外,我们展示了如何使用最近发现的线性复杂度LP解码器来推导特定LDPC码的最小距离的非平凡下界,其复杂度相对于块长度呈现二次增长。这个边界可以使用检查节点合并技术进行细化。最小距离的下界显示为代码的分数距离的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved linear programming decoding and bounds on the minimum distance of LDPC codes
We propose a technique for improving LP decoding, based on the merging of check nodes. This technique can be applied to standard as well as generalized LDPC codes. Furthermore, we show how a recently-discovered linear-complexity LP decoder can be used to derive non-trivial lower bounds on the minimum distance of specific LDPC codes, with complexity that exhibits quadratic growth with respect to the block length. This bound can be refined using the check node merging technique. The lower bound on the minimum distance is shown to be an upper bound on the fractional distance of the code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信