改进的P-EXTRA非光滑分布优化收敛速度

Xuyang Wu, Jie Lu
{"title":"改进的P-EXTRA非光滑分布优化收敛速度","authors":"Xuyang Wu, Jie Lu","doi":"10.1109/ICCA.2019.8899909","DOIUrl":null,"url":null,"abstract":"P-EXTRA is a powerful distributed algorithm for nonsmooth, convex optimization over networks, which allows nodes in a network to cooperatively reach a consensus and meanwhile minimize the sum of their individual cost functions. Nevertheless, only convergence rates in terms of an optimality residual have been provided for P-EXTRA so far. In this paper, we show that the objective function value at the running average of the iterates generated by P-EXTRA converges to the optimal value at an O(1/k) rate, which is a new convergence rate result for P-EXTRA. We also significantly improve the known o(1/k) rate of the consensus error for P-EXTRA to O (1/k2). All these results are established under a more general parameter condition and through completely different convergence analysis, compared with the existing work. Finally, we demonstrate our results via numerical examples.","PeriodicalId":130891,"journal":{"name":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improved Convergence Rates of P-EXTRA for Non-smooth Distributed optimization\",\"authors\":\"Xuyang Wu, Jie Lu\",\"doi\":\"10.1109/ICCA.2019.8899909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"P-EXTRA is a powerful distributed algorithm for nonsmooth, convex optimization over networks, which allows nodes in a network to cooperatively reach a consensus and meanwhile minimize the sum of their individual cost functions. Nevertheless, only convergence rates in terms of an optimality residual have been provided for P-EXTRA so far. In this paper, we show that the objective function value at the running average of the iterates generated by P-EXTRA converges to the optimal value at an O(1/k) rate, which is a new convergence rate result for P-EXTRA. We also significantly improve the known o(1/k) rate of the consensus error for P-EXTRA to O (1/k2). All these results are established under a more general parameter condition and through completely different convergence analysis, compared with the existing work. Finally, we demonstrate our results via numerical examples.\",\"PeriodicalId\":130891,\"journal\":{\"name\":\"2019 IEEE 15th International Conference on Control and Automation (ICCA)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 15th International Conference on Control and Automation (ICCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2019.8899909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2019.8899909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

P-EXTRA是一种强大的分布式算法,用于网络上的非光滑凸优化,它允许网络中的节点合作达成共识,同时最小化其单个代价函数的总和。然而,到目前为止,P-EXTRA只提供了最优残差方面的收敛率。本文证明了P-EXTRA生成的迭代运行平均值处的目标函数值以O(1/k)的速率收敛到最优值,这是P-EXTRA的一个新的收敛速率结果。我们还显著提高了P-EXTRA到o(1/ k2)的共识误差的已知0 (1/k)率。所有这些结果都是在更一般的参数条件下,通过与已有工作完全不同的收敛分析得出的。最后,通过数值算例对结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Convergence Rates of P-EXTRA for Non-smooth Distributed optimization
P-EXTRA is a powerful distributed algorithm for nonsmooth, convex optimization over networks, which allows nodes in a network to cooperatively reach a consensus and meanwhile minimize the sum of their individual cost functions. Nevertheless, only convergence rates in terms of an optimality residual have been provided for P-EXTRA so far. In this paper, we show that the objective function value at the running average of the iterates generated by P-EXTRA converges to the optimal value at an O(1/k) rate, which is a new convergence rate result for P-EXTRA. We also significantly improve the known o(1/k) rate of the consensus error for P-EXTRA to O (1/k2). All these results are established under a more general parameter condition and through completely different convergence analysis, compared with the existing work. Finally, we demonstrate our results via numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信