李亚普诺夫测量和控制周期轨道

Amit Diwadkar, U. Vaidya, A. Raghunathan
{"title":"李亚普诺夫测量和控制周期轨道","authors":"Amit Diwadkar, U. Vaidya, A. Raghunathan","doi":"10.1109/EIT.2008.4554266","DOIUrl":null,"url":null,"abstract":"The focus of this paper is on the computation of optimal stabilizing control for the control of complex dynamics in a lower dimensional discrete time dynamical system. Lyapunov measure is used for the purpose of the stabilization. Using the results from [17], optimal stabilization problem is posed as a infinite dimensional linear program. Finite dimensional approximation of the linear program is obtained using set oriented numerical methods. Simulation results are presented to demonstrate the use of Lyapunov measure for the optimal stabilization of periodic orbit in Henon map and Standard map.","PeriodicalId":215400,"journal":{"name":"2008 IEEE International Conference on Electro/Information Technology","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lyapunov measure and control of periodic orbit\",\"authors\":\"Amit Diwadkar, U. Vaidya, A. Raghunathan\",\"doi\":\"10.1109/EIT.2008.4554266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The focus of this paper is on the computation of optimal stabilizing control for the control of complex dynamics in a lower dimensional discrete time dynamical system. Lyapunov measure is used for the purpose of the stabilization. Using the results from [17], optimal stabilization problem is posed as a infinite dimensional linear program. Finite dimensional approximation of the linear program is obtained using set oriented numerical methods. Simulation results are presented to demonstrate the use of Lyapunov measure for the optimal stabilization of periodic orbit in Henon map and Standard map.\",\"PeriodicalId\":215400,\"journal\":{\"name\":\"2008 IEEE International Conference on Electro/Information Technology\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Electro/Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIT.2008.4554266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Electro/Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2008.4554266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文重点研究了低维离散时间动力系统复杂动力学控制的最优稳定控制的计算。李亚普诺夫测量用于稳定目的。利用[17]的结果,将最优镇定问题化为一个无限维线性规划。采用面向集合的数值方法,得到了线性规划的有限维逼近。仿真结果验证了李雅普诺夫测度在Henon图和Standard图中周期轨道最优稳定中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lyapunov measure and control of periodic orbit
The focus of this paper is on the computation of optimal stabilizing control for the control of complex dynamics in a lower dimensional discrete time dynamical system. Lyapunov measure is used for the purpose of the stabilization. Using the results from [17], optimal stabilization problem is posed as a infinite dimensional linear program. Finite dimensional approximation of the linear program is obtained using set oriented numerical methods. Simulation results are presented to demonstrate the use of Lyapunov measure for the optimal stabilization of periodic orbit in Henon map and Standard map.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信