局部进化搜索中的若干问题

H. Voigt
{"title":"局部进化搜索中的若干问题","authors":"H. Voigt","doi":"10.1109/CEC.1999.782012","DOIUrl":null,"url":null,"abstract":"We consider the very simple problem of optimizing a stationary unimodal function over R/sup n/ without using analytical gradient information. There exist numerous algorithms from mathematical programming to evolutionary algorithms for this problem. We have a closer look at advanced evolution strategies (GSA, CMA), the evolutionary gradient search algorithm (EGS), local search enhancement by random memorizing (LSERM), and the simple (1+1)-evolution strategy. These approaches show different problem-solving capabilities for different test functions. We introduce different measures which reflect certain aspects of what might be seen as the problem difficulty. Based on these measures it is possible to characterize the weak and strong points of the approaches which may lead to even more advanced algorithms.","PeriodicalId":292523,"journal":{"name":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On some difficulties in local evolutionary search\",\"authors\":\"H. Voigt\",\"doi\":\"10.1109/CEC.1999.782012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the very simple problem of optimizing a stationary unimodal function over R/sup n/ without using analytical gradient information. There exist numerous algorithms from mathematical programming to evolutionary algorithms for this problem. We have a closer look at advanced evolution strategies (GSA, CMA), the evolutionary gradient search algorithm (EGS), local search enhancement by random memorizing (LSERM), and the simple (1+1)-evolution strategy. These approaches show different problem-solving capabilities for different test functions. We introduce different measures which reflect certain aspects of what might be seen as the problem difficulty. Based on these measures it is possible to characterize the weak and strong points of the approaches which may lead to even more advanced algorithms.\",\"PeriodicalId\":292523,\"journal\":{\"name\":\"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.1999.782012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.1999.782012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑在不使用解析梯度信息的情况下,在R/sup / n/上优化平稳单峰函数的非常简单的问题。目前已有从数学规划到进化算法等多种算法来解决这一问题。我们仔细研究了高级进化策略(GSA, CMA),进化梯度搜索算法(EGS),随机记忆局部搜索增强(LSERM)和简单的(1+1)-进化策略。这些方法为不同的测试功能显示了不同的问题解决能力。我们引入了不同的措施,这些措施反映了可能被视为问题难度的某些方面。基于这些措施,可以表征方法的弱点和长处,这可能导致更先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some difficulties in local evolutionary search
We consider the very simple problem of optimizing a stationary unimodal function over R/sup n/ without using analytical gradient information. There exist numerous algorithms from mathematical programming to evolutionary algorithms for this problem. We have a closer look at advanced evolution strategies (GSA, CMA), the evolutionary gradient search algorithm (EGS), local search enhancement by random memorizing (LSERM), and the simple (1+1)-evolution strategy. These approaches show different problem-solving capabilities for different test functions. We introduce different measures which reflect certain aspects of what might be seen as the problem difficulty. Based on these measures it is possible to characterize the weak and strong points of the approaches which may lead to even more advanced algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信