无损图像压缩预测误差分布的表征

G. Langdon, A. Zandi
{"title":"无损图像压缩预测误差分布的表征","authors":"G. Langdon, A. Zandi","doi":"10.1109/ACSSC.1996.601087","DOIUrl":null,"url":null,"abstract":"In predictive coding for lossless image compression, full knowledge of the prediction error distribution and efficient coding with an arithmetic coding method is the best one can do with the 0-order model assumption. The zero-order error distributions typically are Laplacian with zero mean. Higher-order error distributions are often skewed with a mean that is often positive or negative. Additional compression is achieved by an accurate characterization of context-dependent error distributions. This paper presents the results of a study the different characteristics of the error distributions found in higher-order conditioning contexts of the LOCO and CALIC algorithms. The study includes nonstationary behavior.","PeriodicalId":270729,"journal":{"name":"Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characterizing prediction error distributions for lossless image compression\",\"authors\":\"G. Langdon, A. Zandi\",\"doi\":\"10.1109/ACSSC.1996.601087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In predictive coding for lossless image compression, full knowledge of the prediction error distribution and efficient coding with an arithmetic coding method is the best one can do with the 0-order model assumption. The zero-order error distributions typically are Laplacian with zero mean. Higher-order error distributions are often skewed with a mean that is often positive or negative. Additional compression is achieved by an accurate characterization of context-dependent error distributions. This paper presents the results of a study the different characteristics of the error distributions found in higher-order conditioning contexts of the LOCO and CALIC algorithms. The study includes nonstationary behavior.\",\"PeriodicalId\":270729,\"journal\":{\"name\":\"Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.1996.601087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1996.601087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在无损图像压缩的预测编码中,在0阶模型假设下,充分了解预测误差分布并使用算术编码方法进行高效编码是最好的方法。零阶误差分布通常是均值为零的拉普拉斯分布。高阶误差分布通常是偏态的,平均值通常是正的或负的。通过准确地描述上下文相关的误差分布,可以实现额外的压缩。本文研究了LOCO和CALIC算法在高阶条件下误差分布的不同特征。该研究包括非平稳行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing prediction error distributions for lossless image compression
In predictive coding for lossless image compression, full knowledge of the prediction error distribution and efficient coding with an arithmetic coding method is the best one can do with the 0-order model assumption. The zero-order error distributions typically are Laplacian with zero mean. Higher-order error distributions are often skewed with a mean that is often positive or negative. Additional compression is achieved by an accurate characterization of context-dependent error distributions. This paper presents the results of a study the different characteristics of the error distributions found in higher-order conditioning contexts of the LOCO and CALIC algorithms. The study includes nonstationary behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信