基于多罚正则化的改进协方差矩阵估计

Bin Zhang, Jie Zhou, Jianbo Li
{"title":"基于多罚正则化的改进协方差矩阵估计","authors":"Bin Zhang, Jie Zhou, Jianbo Li","doi":"10.23919/fusion43075.2019.9011165","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with the problem of estimating a covariance matrix in limited observation scenarios. We revisit the regularization of Gaussian likelihood function and investigate the multi-penalty regularization strategies to improve the flexibility of covariance matrix estimators. Firstly, for an arbitrary target matrix, we jointly consider two penalty terms based on ridge type and Frobenius norm, and obtain a covariance matrix estimator in closed form through maximizing the corresponding multiply penalized log-likelihood function. Secondly, we generalize the existing regularized estimators by simultaneously employing multiple target matrices. The proposed regularized estimators enjoy various desirable statistical properties including positive definiteness (even when the dimensionality exceeds the number of observations), asymptotical unbiasedness and consistency in large sample scenarios. Moreover, we choose the involved tuning parameters in the sense of minimizing an approximate mean squared error based on cross-validation method. Some numerical simulations and an example application to direction-of-arrival estimation are provided for illustrating the performance of proposed estimators.","PeriodicalId":348881,"journal":{"name":"2019 22th International Conference on Information Fusion (FUSION)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improved Covariance Matrix Estimators by Multi-Penalty Regularization\",\"authors\":\"Bin Zhang, Jie Zhou, Jianbo Li\",\"doi\":\"10.23919/fusion43075.2019.9011165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we deal with the problem of estimating a covariance matrix in limited observation scenarios. We revisit the regularization of Gaussian likelihood function and investigate the multi-penalty regularization strategies to improve the flexibility of covariance matrix estimators. Firstly, for an arbitrary target matrix, we jointly consider two penalty terms based on ridge type and Frobenius norm, and obtain a covariance matrix estimator in closed form through maximizing the corresponding multiply penalized log-likelihood function. Secondly, we generalize the existing regularized estimators by simultaneously employing multiple target matrices. The proposed regularized estimators enjoy various desirable statistical properties including positive definiteness (even when the dimensionality exceeds the number of observations), asymptotical unbiasedness and consistency in large sample scenarios. Moreover, we choose the involved tuning parameters in the sense of minimizing an approximate mean squared error based on cross-validation method. Some numerical simulations and an example application to direction-of-arrival estimation are provided for illustrating the performance of proposed estimators.\",\"PeriodicalId\":348881,\"journal\":{\"name\":\"2019 22th International Conference on Information Fusion (FUSION)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 22th International Conference on Information Fusion (FUSION)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/fusion43075.2019.9011165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion43075.2019.9011165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究有限观测条件下协方差矩阵的估计问题。我们重新研究了高斯似然函数的正则化,并研究了多惩罚正则化策略以提高协方差矩阵估计的灵活性。首先,对于任意目标矩阵,我们联合考虑基于脊型和Frobenius范数的两个惩罚项,通过最大化相应的多重惩罚对数似然函数,得到一个封闭形式的协方差矩阵估计量。其次,通过同时使用多个目标矩阵对已有的正则化估计量进行推广。所提出的正则化估计量具有各种理想的统计特性,包括正确定性(即使维度超过观测值的数量)、渐近无偏性和大样本场景中的一致性。此外,我们基于交叉验证方法,在最小化近似均方误差的意义上选择所涉及的调优参数。给出了一些数值模拟和到达方向估计的应用实例来说明所提估计器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Covariance Matrix Estimators by Multi-Penalty Regularization
In this paper, we deal with the problem of estimating a covariance matrix in limited observation scenarios. We revisit the regularization of Gaussian likelihood function and investigate the multi-penalty regularization strategies to improve the flexibility of covariance matrix estimators. Firstly, for an arbitrary target matrix, we jointly consider two penalty terms based on ridge type and Frobenius norm, and obtain a covariance matrix estimator in closed form through maximizing the corresponding multiply penalized log-likelihood function. Secondly, we generalize the existing regularized estimators by simultaneously employing multiple target matrices. The proposed regularized estimators enjoy various desirable statistical properties including positive definiteness (even when the dimensionality exceeds the number of observations), asymptotical unbiasedness and consistency in large sample scenarios. Moreover, we choose the involved tuning parameters in the sense of minimizing an approximate mean squared error based on cross-validation method. Some numerical simulations and an example application to direction-of-arrival estimation are provided for illustrating the performance of proposed estimators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信