基于信息相关熵的D-S证据理论在故障诊断中的应用

Hanqing Zhu, Zhenshu Ma, H. Sun, Haoyi Wang
{"title":"基于信息相关熵的D-S证据理论在故障诊断中的应用","authors":"Hanqing Zhu, Zhenshu Ma, H. Sun, Haoyi Wang","doi":"10.1109/ICQR2MSE.2012.6246248","DOIUrl":null,"url":null,"abstract":"Dempster-Shafer (D-S) evidence theory based multi-sensor information fusion (MSIF) plays an important role in fault diagnosis. Aiming to solve the problems via classical evidence theory, an improved D-S evidence theory through the introduction of information correlation entropy theory is reported in this paper. Then, the proposed method is employed to gearbox fault diagnosis. Experiment analysis results indicate that the new method is effective for MSIF.","PeriodicalId":401503,"journal":{"name":"2012 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Information correlation entropy based D-S evidence theory used in fault diagnosis\",\"authors\":\"Hanqing Zhu, Zhenshu Ma, H. Sun, Haoyi Wang\",\"doi\":\"10.1109/ICQR2MSE.2012.6246248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dempster-Shafer (D-S) evidence theory based multi-sensor information fusion (MSIF) plays an important role in fault diagnosis. Aiming to solve the problems via classical evidence theory, an improved D-S evidence theory through the introduction of information correlation entropy theory is reported in this paper. Then, the proposed method is employed to gearbox fault diagnosis. Experiment analysis results indicate that the new method is effective for MSIF.\",\"PeriodicalId\":401503,\"journal\":{\"name\":\"2012 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICQR2MSE.2012.6246248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICQR2MSE.2012.6246248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于Dempster-Shafer (D-S)证据理论的多传感器信息融合(MSIF)在故障诊断中具有重要作用。针对经典证据理论存在的问题,本文引入信息相关熵理论,提出了一种改进的D-S证据理论。然后,将该方法应用于齿轮箱故障诊断。实验分析结果表明,新方法对MSIF是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Information correlation entropy based D-S evidence theory used in fault diagnosis
Dempster-Shafer (D-S) evidence theory based multi-sensor information fusion (MSIF) plays an important role in fault diagnosis. Aiming to solve the problems via classical evidence theory, an improved D-S evidence theory through the introduction of information correlation entropy theory is reported in this paper. Then, the proposed method is employed to gearbox fault diagnosis. Experiment analysis results indicate that the new method is effective for MSIF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信