主采样空间神经光子采样中的光源选择

Yuta Tsuji, Tatsuya Yatagawa, S. Morishima
{"title":"主采样空间神经光子采样中的光源选择","authors":"Yuta Tsuji, Tatsuya Yatagawa, S. Morishima","doi":"10.1145/3476124.3488639","DOIUrl":null,"url":null,"abstract":"This paper proposes a light source selection for photon mapping combined with recent deep-learning-based importance sampling. Although applying such neural importance sampling (NIS) to photon mapping is not difficult, a straightforward approach can sample inappropriate photons for each light source because NIS relies on the approximation of a smooth continuous probability density function on the primary sample space, whereas the light source selection follows a discrete probability distribution. To alleviate this problem, we introduce a normalizing flow conditioned by a feature vector representing the index for each light source. When the neural network for NIS is trained to sample visible photons, we achieved lower variance with the same sample budgets, compared to a previous photon sampling using Markov chain Monte Carlo.","PeriodicalId":199099,"journal":{"name":"SIGGRAPH Asia 2021 Posters","volume":"253 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Light Source Selection in Primary-Sample-Space Neural Photon Sampling\",\"authors\":\"Yuta Tsuji, Tatsuya Yatagawa, S. Morishima\",\"doi\":\"10.1145/3476124.3488639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a light source selection for photon mapping combined with recent deep-learning-based importance sampling. Although applying such neural importance sampling (NIS) to photon mapping is not difficult, a straightforward approach can sample inappropriate photons for each light source because NIS relies on the approximation of a smooth continuous probability density function on the primary sample space, whereas the light source selection follows a discrete probability distribution. To alleviate this problem, we introduce a normalizing flow conditioned by a feature vector representing the index for each light source. When the neural network for NIS is trained to sample visible photons, we achieved lower variance with the same sample budgets, compared to a previous photon sampling using Markov chain Monte Carlo.\",\"PeriodicalId\":199099,\"journal\":{\"name\":\"SIGGRAPH Asia 2021 Posters\",\"volume\":\"253 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH Asia 2021 Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3476124.3488639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2021 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476124.3488639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

结合最新的基于深度学习的重要性采样,提出了一种用于光子映射的光源选择方法。虽然将这种神经重要性采样(NIS)应用于光子映射并不困难,但由于NIS依赖于主样本空间上光滑连续概率密度函数的近似,而光源选择遵循离散概率分布,因此直接的方法可能会对每个光源采样不合适的光子。为了缓解这个问题,我们引入了一个归一化流,该流由代表每个光源指数的特征向量来调节。当NIS的神经网络被训练来采样可见光子时,与之前使用马尔可夫链蒙特卡罗进行光子采样相比,我们在相同的样本预算下获得了更低的方差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Light Source Selection in Primary-Sample-Space Neural Photon Sampling
This paper proposes a light source selection for photon mapping combined with recent deep-learning-based importance sampling. Although applying such neural importance sampling (NIS) to photon mapping is not difficult, a straightforward approach can sample inappropriate photons for each light source because NIS relies on the approximation of a smooth continuous probability density function on the primary sample space, whereas the light source selection follows a discrete probability distribution. To alleviate this problem, we introduce a normalizing flow conditioned by a feature vector representing the index for each light source. When the neural network for NIS is trained to sample visible photons, we achieved lower variance with the same sample budgets, compared to a previous photon sampling using Markov chain Monte Carlo.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信