P. Meinerzhagen, A. Teman, A. Mordakhay, A. Burg, A. Fish
{"title":"用于生物医学应用的亚vt - 2T增益细胞存储器","authors":"P. Meinerzhagen, A. Teman, A. Mordakhay, A. Burg, A. Fish","doi":"10.1109/SUBVT.2012.6404318","DOIUrl":null,"url":null,"abstract":"Biomedical systems often require several kb of embedded memory and are typically operated in the subthreshold (sub-VT) domain for good energy-efficiency. Embedded memories and their leakage current can easily dominate the overall silicon area and the total power consumption, respectively. Gain-cell based embedded DRAM arrays provide a high-density, low-leakage alternative to SRAM for such systems; however, they are typically designed for operation at nominal or only slightly scaled supply voltages. For the first time, this paper presents a gain-cell array which is fully functional in the sub-VT regime and achieves a data retention time that is more than 104 times higher than the access time. Monte Carlos simulations show that the 2 kb gain-cell array, implemented in a mature 0.18μm CMOS node and supplied with a sub-VT voltage of 400mV, exhibits robust write and read operations at 500 kHz under parametric variations and has over 99% availibilty for read and write access.","PeriodicalId":383826,"journal":{"name":"2012 IEEE Subthreshold Microelectronics Conference (SubVT)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"A sub-VT 2T gain-cell memory for biomedical applications\",\"authors\":\"P. Meinerzhagen, A. Teman, A. Mordakhay, A. Burg, A. Fish\",\"doi\":\"10.1109/SUBVT.2012.6404318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biomedical systems often require several kb of embedded memory and are typically operated in the subthreshold (sub-VT) domain for good energy-efficiency. Embedded memories and their leakage current can easily dominate the overall silicon area and the total power consumption, respectively. Gain-cell based embedded DRAM arrays provide a high-density, low-leakage alternative to SRAM for such systems; however, they are typically designed for operation at nominal or only slightly scaled supply voltages. For the first time, this paper presents a gain-cell array which is fully functional in the sub-VT regime and achieves a data retention time that is more than 104 times higher than the access time. Monte Carlos simulations show that the 2 kb gain-cell array, implemented in a mature 0.18μm CMOS node and supplied with a sub-VT voltage of 400mV, exhibits robust write and read operations at 500 kHz under parametric variations and has over 99% availibilty for read and write access.\",\"PeriodicalId\":383826,\"journal\":{\"name\":\"2012 IEEE Subthreshold Microelectronics Conference (SubVT)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Subthreshold Microelectronics Conference (SubVT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SUBVT.2012.6404318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Subthreshold Microelectronics Conference (SubVT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SUBVT.2012.6404318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A sub-VT 2T gain-cell memory for biomedical applications
Biomedical systems often require several kb of embedded memory and are typically operated in the subthreshold (sub-VT) domain for good energy-efficiency. Embedded memories and their leakage current can easily dominate the overall silicon area and the total power consumption, respectively. Gain-cell based embedded DRAM arrays provide a high-density, low-leakage alternative to SRAM for such systems; however, they are typically designed for operation at nominal or only slightly scaled supply voltages. For the first time, this paper presents a gain-cell array which is fully functional in the sub-VT regime and achieves a data retention time that is more than 104 times higher than the access time. Monte Carlos simulations show that the 2 kb gain-cell array, implemented in a mature 0.18μm CMOS node and supplied with a sub-VT voltage of 400mV, exhibits robust write and read operations at 500 kHz under parametric variations and has over 99% availibilty for read and write access.