文本检索的指数概率模型的实证发展:利用文本分析建立一个更好的模型

J. Teevan, David R Karger
{"title":"文本检索的指数概率模型的实证发展:利用文本分析建立一个更好的模型","authors":"J. Teevan, David R Karger","doi":"10.1145/860435.860441","DOIUrl":null,"url":null,"abstract":"Much work in information retrieval focuses on using a model of documents and queries to derive retrieval algorithms. Model based development is a useful alternative to heuristic development because in a model the assumptions are explicit and can be examined and refined independent of the particular retrieval algorithm. We explore the explicit assumptions underlying the naïve framework by performing computational analysis of actual corpora and queries to devise a generative document model that closely matches text. Our thesis is that a model so developed will be more accurate than existing models, and thus more useful in retrieval, as well as other applications. We test this by learning from a corpus the best document model. We find the learned model better predicts the existence of text data and has improved performance on certain IR tasks.","PeriodicalId":209809,"journal":{"name":"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Empirical development of an exponential probabilistic model for text retrieval: using textual analysis to build a better model\",\"authors\":\"J. Teevan, David R Karger\",\"doi\":\"10.1145/860435.860441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Much work in information retrieval focuses on using a model of documents and queries to derive retrieval algorithms. Model based development is a useful alternative to heuristic development because in a model the assumptions are explicit and can be examined and refined independent of the particular retrieval algorithm. We explore the explicit assumptions underlying the naïve framework by performing computational analysis of actual corpora and queries to devise a generative document model that closely matches text. Our thesis is that a model so developed will be more accurate than existing models, and thus more useful in retrieval, as well as other applications. We test this by learning from a corpus the best document model. We find the learned model better predicts the existence of text data and has improved performance on certain IR tasks.\",\"PeriodicalId\":209809,\"journal\":{\"name\":\"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/860435.860441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/860435.860441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

信息检索中的许多工作都集中在使用文档和查询模型来派生检索算法。基于模型的开发是启发式开发的一种有用的替代方案,因为在模型中,假设是明确的,可以独立于特定的检索算法进行检查和改进。我们通过对实际语料库和查询进行计算分析来探索naïve框架的明确假设,以设计一个与文本密切匹配的生成文档模型。我们的论点是,这样开发的模型将比现有的模型更准确,因此在检索和其他应用中更有用。我们通过从语料库中学习最佳文档模型来测试这一点。我们发现学习的模型可以更好地预测文本数据的存在,并且在某些IR任务上提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Empirical development of an exponential probabilistic model for text retrieval: using textual analysis to build a better model
Much work in information retrieval focuses on using a model of documents and queries to derive retrieval algorithms. Model based development is a useful alternative to heuristic development because in a model the assumptions are explicit and can be examined and refined independent of the particular retrieval algorithm. We explore the explicit assumptions underlying the naïve framework by performing computational analysis of actual corpora and queries to devise a generative document model that closely matches text. Our thesis is that a model so developed will be more accurate than existing models, and thus more useful in retrieval, as well as other applications. We test this by learning from a corpus the best document model. We find the learned model better predicts the existence of text data and has improved performance on certain IR tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信