基于元启发式技术的软件产品线特征选择优化

Hitesh Yadav, A. Charan Kumari, R. Chhikara
{"title":"基于元启发式技术的软件产品线特征选择优化","authors":"Hitesh Yadav, A. Charan Kumari, R. Chhikara","doi":"10.1504/ijes.2020.10026155","DOIUrl":null,"url":null,"abstract":"The role of software product line (SPL) is very important in representing the same system with multiple variants. Feature models are used to define SPL. In this paper, genetic algorithm (GA), hyper-heuristic algorithm and particle swarm optimisation (PSO) have been applied for feature selection optimisation in SPL. Also, an improved fitness function is applied for optimisation of features in SPL. The objective function is designed by taking reusability and consistency of features (components) into consideration. Furthermore, we have used a case study and discussed about software product line in detail. A non-parametric test, i.e., Kruskal-Wallis test has been performed to analyse performance and computation time of 20 to 1,000 features sets and identify core features. Through extensive experimental analysis, it is observed that PSO outperforms GA and hyper-heuristic algorithm.","PeriodicalId":412308,"journal":{"name":"Int. J. Embed. Syst.","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Feature selection optimisation of software product line using metaheuristic techniques\",\"authors\":\"Hitesh Yadav, A. Charan Kumari, R. Chhikara\",\"doi\":\"10.1504/ijes.2020.10026155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The role of software product line (SPL) is very important in representing the same system with multiple variants. Feature models are used to define SPL. In this paper, genetic algorithm (GA), hyper-heuristic algorithm and particle swarm optimisation (PSO) have been applied for feature selection optimisation in SPL. Also, an improved fitness function is applied for optimisation of features in SPL. The objective function is designed by taking reusability and consistency of features (components) into consideration. Furthermore, we have used a case study and discussed about software product line in detail. A non-parametric test, i.e., Kruskal-Wallis test has been performed to analyse performance and computation time of 20 to 1,000 features sets and identify core features. Through extensive experimental analysis, it is observed that PSO outperforms GA and hyper-heuristic algorithm.\",\"PeriodicalId\":412308,\"journal\":{\"name\":\"Int. J. Embed. Syst.\",\"volume\":\"221 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Embed. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijes.2020.10026155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Embed. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijes.2020.10026155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在表示具有多个变体的同一系统时,软件产品线(SPL)的作用非常重要。特征模型用于定义SPL。本文将遗传算法(GA)、超启发式算法(hyperheuristic algorithm)和粒子群算法(particle swarm optimization, PSO)应用于SPL的特征选择优化。同时,应用改进的适应度函数对SPL中的特征进行优化。目标函数的设计考虑了特征(组件)的可重用性和一致性。在此基础上,通过案例分析对软件产品线进行了详细的讨论。进行了非参数测试,即Kruskal-Wallis测试,分析了20至1,000个特征集的性能和计算时间,并确定了核心特征。通过大量的实验分析,观察到粒子群算法优于遗传算法和超启发式算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature selection optimisation of software product line using metaheuristic techniques
The role of software product line (SPL) is very important in representing the same system with multiple variants. Feature models are used to define SPL. In this paper, genetic algorithm (GA), hyper-heuristic algorithm and particle swarm optimisation (PSO) have been applied for feature selection optimisation in SPL. Also, an improved fitness function is applied for optimisation of features in SPL. The objective function is designed by taking reusability and consistency of features (components) into consideration. Furthermore, we have used a case study and discussed about software product line in detail. A non-parametric test, i.e., Kruskal-Wallis test has been performed to analyse performance and computation time of 20 to 1,000 features sets and identify core features. Through extensive experimental analysis, it is observed that PSO outperforms GA and hyper-heuristic algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信