计算二维可分变换的轨道算法和统一阵列处理器

S. Sedukhin, A. Zekri, T. Miyazaki
{"title":"计算二维可分变换的轨道算法和统一阵列处理器","authors":"S. Sedukhin, A. Zekri, T. Miyazaki","doi":"10.1109/ICPPW.2010.29","DOIUrl":null,"url":null,"abstract":"The two-dimensional (2D) forward/inverse discrete Fourier transform (DFT), discrete cosine transform (DCT), discrete sine transform (DST), discrete Hartley transform (DHT), discrete Walsh-Hadamard transform (DWHT), play a fundamental role in many practical applications. Due to the separability property, all these transforms can be uniquely defined as a triple matrix product with one matrix transposition. Based on a systematic approach to represent and schedule different forms of the $n\\times n$ matrix-matrix multiply-add (MMA) operation in 3D index space, we design new orbital highly-parallel/scalable algorithms and present an efficient $n\\times n$ unified array processor for computing {\\it any} $n\\times n$ forward/inverse discrete separable transform in the minimal $2n$ time-steps. Unlike traditional 2D systolic array processing, all $n^2$ register-stored elements of initial/intermediate matrices are processed simultaneously by all $n^2$ processing elements of the unified array processor at each time-step. Hence the proposed array processor is appropriate for applications with naturally arranged multidimensional data such as still images, video frames, 2D data from a matrix sensor, etc. Ultimately, we introduce a novel formulation and a highly-parallel implementation of the frequently required matrix data alignment and manipulation by using MMA operations on the same array processor so that no additional circuitry is needed.","PeriodicalId":415472,"journal":{"name":"2010 39th International Conference on Parallel Processing Workshops","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Orbital Algorithms and Unified Array Processor for Computing 2D Separable Transforms\",\"authors\":\"S. Sedukhin, A. Zekri, T. Miyazaki\",\"doi\":\"10.1109/ICPPW.2010.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The two-dimensional (2D) forward/inverse discrete Fourier transform (DFT), discrete cosine transform (DCT), discrete sine transform (DST), discrete Hartley transform (DHT), discrete Walsh-Hadamard transform (DWHT), play a fundamental role in many practical applications. Due to the separability property, all these transforms can be uniquely defined as a triple matrix product with one matrix transposition. Based on a systematic approach to represent and schedule different forms of the $n\\\\times n$ matrix-matrix multiply-add (MMA) operation in 3D index space, we design new orbital highly-parallel/scalable algorithms and present an efficient $n\\\\times n$ unified array processor for computing {\\\\it any} $n\\\\times n$ forward/inverse discrete separable transform in the minimal $2n$ time-steps. Unlike traditional 2D systolic array processing, all $n^2$ register-stored elements of initial/intermediate matrices are processed simultaneously by all $n^2$ processing elements of the unified array processor at each time-step. Hence the proposed array processor is appropriate for applications with naturally arranged multidimensional data such as still images, video frames, 2D data from a matrix sensor, etc. Ultimately, we introduce a novel formulation and a highly-parallel implementation of the frequently required matrix data alignment and manipulation by using MMA operations on the same array processor so that no additional circuitry is needed.\",\"PeriodicalId\":415472,\"journal\":{\"name\":\"2010 39th International Conference on Parallel Processing Workshops\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 39th International Conference on Parallel Processing Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPPW.2010.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 39th International Conference on Parallel Processing Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPPW.2010.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

二维(2D)正/反离散傅立叶变换(DFT)、离散余弦变换(DCT)、离散正弦变换(DST)、离散哈特利变换(DHT)、离散Walsh-Hadamard变换(DWHT)在许多实际应用中起着基础作用。由于可分性,所有这些变换都可以唯一地定义为一个矩阵转置的三重矩阵积。基于系统地表示和调度三维索引空间中不同形式的矩阵-矩阵乘加(MMA)运算,我们设计了新的轨道高度并行/可扩展算法,并提出了一种高效的$n\times n$统一阵列处理器,用于在最小$2n$时间步内计算$n\times n$正/逆离散可分离变换。与传统的二维收缩数组处理不同,在每个时间步,统一数组处理器的所有$n^2$处理元素同时处理初始/中间矩阵的所有$n^2$寄存器存储元素。因此,所提出的阵列处理器适用于具有自然排列的多维数据的应用,例如静止图像、视频帧、来自矩阵传感器的2D数据等。最后,我们引入了一种新颖的公式和高度并行的实现,通过在同一阵列处理器上使用MMA操作来实现经常需要的矩阵数据对齐和操作,因此不需要额外的电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orbital Algorithms and Unified Array Processor for Computing 2D Separable Transforms
The two-dimensional (2D) forward/inverse discrete Fourier transform (DFT), discrete cosine transform (DCT), discrete sine transform (DST), discrete Hartley transform (DHT), discrete Walsh-Hadamard transform (DWHT), play a fundamental role in many practical applications. Due to the separability property, all these transforms can be uniquely defined as a triple matrix product with one matrix transposition. Based on a systematic approach to represent and schedule different forms of the $n\times n$ matrix-matrix multiply-add (MMA) operation in 3D index space, we design new orbital highly-parallel/scalable algorithms and present an efficient $n\times n$ unified array processor for computing {\it any} $n\times n$ forward/inverse discrete separable transform in the minimal $2n$ time-steps. Unlike traditional 2D systolic array processing, all $n^2$ register-stored elements of initial/intermediate matrices are processed simultaneously by all $n^2$ processing elements of the unified array processor at each time-step. Hence the proposed array processor is appropriate for applications with naturally arranged multidimensional data such as still images, video frames, 2D data from a matrix sensor, etc. Ultimately, we introduce a novel formulation and a highly-parallel implementation of the frequently required matrix data alignment and manipulation by using MMA operations on the same array processor so that no additional circuitry is needed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信