具有竞争和扩散的三分量系统的行波解

H. Ikeda
{"title":"具有竞争和扩散的三分量系统的行波解","authors":"H. Ikeda","doi":"10.4310/maa.2001.v8.n3.a6","DOIUrl":null,"url":null,"abstract":"Travelling wave solutions of three-component systems with competition and diffusion in which the first two species diffuse slowly but react fast than the third species are considered. Under the assumption that these systems have two stable equilibrium states, F±, the multiple existence and stability of travelling wave solutions connecting P_ with P+ are shown by using analytical singular perturbation method and the SLEP method. Velocity of a travelling wave solution surely depends on the third species. For the multiple existence of stable solutions, the dependency of its velocity on the third species is important.","PeriodicalId":359486,"journal":{"name":"Mathematics journal of Toyama University","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Travelling wave solutions of three-component systems with competition and diffusion\",\"authors\":\"H. Ikeda\",\"doi\":\"10.4310/maa.2001.v8.n3.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Travelling wave solutions of three-component systems with competition and diffusion in which the first two species diffuse slowly but react fast than the third species are considered. Under the assumption that these systems have two stable equilibrium states, F±, the multiple existence and stability of travelling wave solutions connecting P_ with P+ are shown by using analytical singular perturbation method and the SLEP method. Velocity of a travelling wave solution surely depends on the third species. For the multiple existence of stable solutions, the dependency of its velocity on the third species is important.\",\"PeriodicalId\":359486,\"journal\":{\"name\":\"Mathematics journal of Toyama University\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics journal of Toyama University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/maa.2001.v8.n3.a6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics journal of Toyama University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/maa.2001.v8.n3.a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

考虑了具有竞争扩散的三分量系统的行波解,其中前两种扩散慢,但反应快于第三种。在假设系统有两个稳定的平衡态F±的情况下,用解析奇异摄动法和SLEP方法证明了P_与P+连接的行波解的多重存在性和稳定性。行波解的速度肯定取决于第三种。对于稳定解的多重存在性,其速度对第三种的依赖性是重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Travelling wave solutions of three-component systems with competition and diffusion
Travelling wave solutions of three-component systems with competition and diffusion in which the first two species diffuse slowly but react fast than the third species are considered. Under the assumption that these systems have two stable equilibrium states, F±, the multiple existence and stability of travelling wave solutions connecting P_ with P+ are shown by using analytical singular perturbation method and the SLEP method. Velocity of a travelling wave solution surely depends on the third species. For the multiple existence of stable solutions, the dependency of its velocity on the third species is important.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信