{"title":"CityResolver:智慧城市冲突解决决策支持系统","authors":"Meiyi Ma, J. Stankovic, Lu Feng","doi":"10.1109/ICCPS.2018.00014","DOIUrl":null,"url":null,"abstract":"Resolution of conflicts across services in smart cities is an important yet challenging problem. We present CityResolver – a decision support system for conflict resolution in smart cities. CityResolver uses an Integer Linear Programming based method to generate a small set of resolution options, and a Signal Temporal Logic based verification approach to compute these resolution options' impact on city performance. The trade-offs between resolution options are shown in a dashboard to support decision makers in selecting the best resolution. We demonstrate the effectiveness of CityResolver by comparing the performance with two baselines: a smart city without conflict resolution, and CityGuard which uses a priority rule-based conflict resolution. Experimental results show that CityResolver can reduce the number of requirement violations and improve the city performance significantly.","PeriodicalId":199062,"journal":{"name":"2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS)","volume":"463 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"CityResolver: A Decision Support System for Conflict Resolution in Smart Cities\",\"authors\":\"Meiyi Ma, J. Stankovic, Lu Feng\",\"doi\":\"10.1109/ICCPS.2018.00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resolution of conflicts across services in smart cities is an important yet challenging problem. We present CityResolver – a decision support system for conflict resolution in smart cities. CityResolver uses an Integer Linear Programming based method to generate a small set of resolution options, and a Signal Temporal Logic based verification approach to compute these resolution options' impact on city performance. The trade-offs between resolution options are shown in a dashboard to support decision makers in selecting the best resolution. We demonstrate the effectiveness of CityResolver by comparing the performance with two baselines: a smart city without conflict resolution, and CityGuard which uses a priority rule-based conflict resolution. Experimental results show that CityResolver can reduce the number of requirement violations and improve the city performance significantly.\",\"PeriodicalId\":199062,\"journal\":{\"name\":\"2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS)\",\"volume\":\"463 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCPS.2018.00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPS.2018.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CityResolver: A Decision Support System for Conflict Resolution in Smart Cities
Resolution of conflicts across services in smart cities is an important yet challenging problem. We present CityResolver – a decision support system for conflict resolution in smart cities. CityResolver uses an Integer Linear Programming based method to generate a small set of resolution options, and a Signal Temporal Logic based verification approach to compute these resolution options' impact on city performance. The trade-offs between resolution options are shown in a dashboard to support decision makers in selecting the best resolution. We demonstrate the effectiveness of CityResolver by comparing the performance with two baselines: a smart city without conflict resolution, and CityGuard which uses a priority rule-based conflict resolution. Experimental results show that CityResolver can reduce the number of requirement violations and improve the city performance significantly.