(WiP) LLTFI:低级张量故障注入器

Abraham Chan, U. Agarwal, K. Pattabiraman
{"title":"(WiP) LLTFI:低级张量故障注入器","authors":"Abraham Chan, U. Agarwal, K. Pattabiraman","doi":"10.1109/ISSREW53611.2021.00045","DOIUrl":null,"url":null,"abstract":"As machine learning (ML) has become more prevalent across many critical domains, so has the need to understand ML system resilience. While previous work has focused on building ML fault injectors at the application level, there has been little work enabling fault injection of ML applications at a lower level. We present LLTFI, a tool under development, which allows users to run fault injection experiments on C/C++, TensorFlow and PyTorch applications at the LLVM IR level. LLTFI provides users with greater fault injection granularity and a better ability to understand how faults manifest and propagate between programmed and ML components. We demonstrate how LLTFI can be applied to a ML application with an end-to-end example.","PeriodicalId":385392,"journal":{"name":"2021 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"439 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"(WiP) LLTFI: Low-Level Tensor Fault Injector\",\"authors\":\"Abraham Chan, U. Agarwal, K. Pattabiraman\",\"doi\":\"10.1109/ISSREW53611.2021.00045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As machine learning (ML) has become more prevalent across many critical domains, so has the need to understand ML system resilience. While previous work has focused on building ML fault injectors at the application level, there has been little work enabling fault injection of ML applications at a lower level. We present LLTFI, a tool under development, which allows users to run fault injection experiments on C/C++, TensorFlow and PyTorch applications at the LLVM IR level. LLTFI provides users with greater fault injection granularity and a better ability to understand how faults manifest and propagate between programmed and ML components. We demonstrate how LLTFI can be applied to a ML application with an end-to-end example.\",\"PeriodicalId\":385392,\"journal\":{\"name\":\"2021 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"volume\":\"439 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSREW53611.2021.00045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW53611.2021.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着机器学习(ML)在许多关键领域变得越来越普遍,了解ML系统弹性的需求也越来越大。虽然以前的工作主要集中在应用程序级别构建ML故障注入器,但很少有工作在较低级别启用ML应用程序的故障注入。我们介绍了LLTFI,一个正在开发的工具,它允许用户在LLVM IR级别上在C/ c++, TensorFlow和PyTorch应用程序上运行故障注入实验。LLTFI为用户提供了更大的故障注入粒度,以及更好地理解故障如何在编程组件和ML组件之间显示和传播的能力。我们将通过端到端示例演示如何将LLTFI应用于ML应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
(WiP) LLTFI: Low-Level Tensor Fault Injector
As machine learning (ML) has become more prevalent across many critical domains, so has the need to understand ML system resilience. While previous work has focused on building ML fault injectors at the application level, there has been little work enabling fault injection of ML applications at a lower level. We present LLTFI, a tool under development, which allows users to run fault injection experiments on C/C++, TensorFlow and PyTorch applications at the LLVM IR level. LLTFI provides users with greater fault injection granularity and a better ability to understand how faults manifest and propagate between programmed and ML components. We demonstrate how LLTFI can be applied to a ML application with an end-to-end example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信