{"title":"两系统预测的离散修正极限时间分析","authors":"Tijjani A. Waziri","doi":"10.30699/ijrrs.5.1.1","DOIUrl":null,"url":null,"abstract":"This paper studies a discrete fix-up limit policy for two systems. Because sometimes, a failed system cannot be completely fixed at the optimal fix-up limit time due to some logistic issues. This paper provides a chance to complete fixing up a failed system within a discrete fix-up limit time LT (L=1,2,3…) for a fixed T. The explicit expression of the expected long-term cost per unit time is derived for the two systems based on the assumptions of the systems. Finally, a numerical example is given to illustrate the theoretical results of the proposed model.","PeriodicalId":395350,"journal":{"name":"International Journal of Reliability, Risk and Safety: Theory and Application","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Discrete Fix Up Limit Time of Two Systems Prediction\",\"authors\":\"Tijjani A. Waziri\",\"doi\":\"10.30699/ijrrs.5.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies a discrete fix-up limit policy for two systems. Because sometimes, a failed system cannot be completely fixed at the optimal fix-up limit time due to some logistic issues. This paper provides a chance to complete fixing up a failed system within a discrete fix-up limit time LT (L=1,2,3…) for a fixed T. The explicit expression of the expected long-term cost per unit time is derived for the two systems based on the assumptions of the systems. Finally, a numerical example is given to illustrate the theoretical results of the proposed model.\",\"PeriodicalId\":395350,\"journal\":{\"name\":\"International Journal of Reliability, Risk and Safety: Theory and Application\",\"volume\":\"127 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Reliability, Risk and Safety: Theory and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30699/ijrrs.5.1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reliability, Risk and Safety: Theory and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30699/ijrrs.5.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of Discrete Fix Up Limit Time of Two Systems Prediction
This paper studies a discrete fix-up limit policy for two systems. Because sometimes, a failed system cannot be completely fixed at the optimal fix-up limit time due to some logistic issues. This paper provides a chance to complete fixing up a failed system within a discrete fix-up limit time LT (L=1,2,3…) for a fixed T. The explicit expression of the expected long-term cost per unit time is derived for the two systems based on the assumptions of the systems. Finally, a numerical example is given to illustrate the theoretical results of the proposed model.