Yipeng Hou, A. Ravey, D. Bouquain, Fei Gao, A. Miraoui, Weiguo Liu
{"title":"基于不同行驶周期的混合动力汽车电机控制","authors":"Yipeng Hou, A. Ravey, D. Bouquain, Fei Gao, A. Miraoui, Weiguo Liu","doi":"10.1109/ITEC.2013.6574516","DOIUrl":null,"url":null,"abstract":"This paper presents a comparison of different electric motor controls-PI control and sliding mode control (SMC) for a hybrid electric vehicle based on fuel cell. The aim of control is tracking a driving cycle, which represents the vehicle speed by time. Different driving cycles (standard and recorded) are simulated, and the study shows the impact of the different driving patterns on the electric motor control. The simulation results demonstrate that sliding mode control has better dynamic performance than PI control especially when load torque changes at high frequency.","PeriodicalId":118616,"journal":{"name":"2013 IEEE Transportation Electrification Conference and Expo (ITEC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Electric motor control for hybrid electric vehicles based on different driving cycles\",\"authors\":\"Yipeng Hou, A. Ravey, D. Bouquain, Fei Gao, A. Miraoui, Weiguo Liu\",\"doi\":\"10.1109/ITEC.2013.6574516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a comparison of different electric motor controls-PI control and sliding mode control (SMC) for a hybrid electric vehicle based on fuel cell. The aim of control is tracking a driving cycle, which represents the vehicle speed by time. Different driving cycles (standard and recorded) are simulated, and the study shows the impact of the different driving patterns on the electric motor control. The simulation results demonstrate that sliding mode control has better dynamic performance than PI control especially when load torque changes at high frequency.\",\"PeriodicalId\":118616,\"journal\":{\"name\":\"2013 IEEE Transportation Electrification Conference and Expo (ITEC)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Transportation Electrification Conference and Expo (ITEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITEC.2013.6574516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Transportation Electrification Conference and Expo (ITEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITEC.2013.6574516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electric motor control for hybrid electric vehicles based on different driving cycles
This paper presents a comparison of different electric motor controls-PI control and sliding mode control (SMC) for a hybrid electric vehicle based on fuel cell. The aim of control is tracking a driving cycle, which represents the vehicle speed by time. Different driving cycles (standard and recorded) are simulated, and the study shows the impact of the different driving patterns on the electric motor control. The simulation results demonstrate that sliding mode control has better dynamic performance than PI control especially when load torque changes at high frequency.