基于特征值的语义句子相似度特征

Ali Vardasbi, Heshaam Faili, M. Asadpour
{"title":"基于特征值的语义句子相似度特征","authors":"Ali Vardasbi, Heshaam Faili, M. Asadpour","doi":"10.1109/AISP.2017.8324078","DOIUrl":null,"url":null,"abstract":"Due to its increasing importance, the semantic sentence similarity is getting more attention among natural language processing researchers during recent years. To the best of our knowledge, previous studies on the task have not exploited the eigenvalue analysis on their systems. In this paper we approach the sentence similarity task through eigenvalue analysis. We will propose a simple but efficient new aligner and introduce three new features for the task. Two of our proposed features are based on the eigenvalue analysis. Finally, we will show the significance of our proposed aligner and features through experiments. Specifically, we will show that our features outperform the STS2015 benchmarks for semantic sentence similarity.","PeriodicalId":386952,"journal":{"name":"2017 Artificial Intelligence and Signal Processing Conference (AISP)","volume":"339 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eigenvalue based features for semantic sentence similarity\",\"authors\":\"Ali Vardasbi, Heshaam Faili, M. Asadpour\",\"doi\":\"10.1109/AISP.2017.8324078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to its increasing importance, the semantic sentence similarity is getting more attention among natural language processing researchers during recent years. To the best of our knowledge, previous studies on the task have not exploited the eigenvalue analysis on their systems. In this paper we approach the sentence similarity task through eigenvalue analysis. We will propose a simple but efficient new aligner and introduce three new features for the task. Two of our proposed features are based on the eigenvalue analysis. Finally, we will show the significance of our proposed aligner and features through experiments. Specifically, we will show that our features outperform the STS2015 benchmarks for semantic sentence similarity.\",\"PeriodicalId\":386952,\"journal\":{\"name\":\"2017 Artificial Intelligence and Signal Processing Conference (AISP)\",\"volume\":\"339 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Artificial Intelligence and Signal Processing Conference (AISP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AISP.2017.8324078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Artificial Intelligence and Signal Processing Conference (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP.2017.8324078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

语义句相似度的重要性日益突出,近年来越来越受到自然语言处理研究者的关注。据我们所知,以前的研究并没有在他们的系统上利用特征值分析。本文通过特征值分析来处理句子相似度任务。我们将提出一个简单而高效的新对准器,并为该任务引入三个新特性。我们提出的两个特征是基于特征值分析。最后,我们将通过实验证明我们所提出的对准器和特征的意义。具体来说,我们将证明我们的特征在语义句子相似度方面优于STS2015基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eigenvalue based features for semantic sentence similarity
Due to its increasing importance, the semantic sentence similarity is getting more attention among natural language processing researchers during recent years. To the best of our knowledge, previous studies on the task have not exploited the eigenvalue analysis on their systems. In this paper we approach the sentence similarity task through eigenvalue analysis. We will propose a simple but efficient new aligner and introduce three new features for the task. Two of our proposed features are based on the eigenvalue analysis. Finally, we will show the significance of our proposed aligner and features through experiments. Specifically, we will show that our features outperform the STS2015 benchmarks for semantic sentence similarity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信