{"title":"核加权平均估计的渐近正态性","authors":"Brahima Soro, O. Hili","doi":"10.16929/as/2022.3237.305","DOIUrl":null,"url":null,"abstract":"This paper presents a set of general normality results for kernel weighted averages. We extend existing results in literature for independent data a s in Yao (2017) to stationary dependent longitudinal data. The asymptotic properties of the proposed weighted averages are investigated under \\(\\alpha\\)-mixing conditions. These results are useful for covariance function estimation based on nonparametric kernel method.","PeriodicalId":430341,"journal":{"name":"Afrika Statistika","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic normality for kernel weighted averages estimation\",\"authors\":\"Brahima Soro, O. Hili\",\"doi\":\"10.16929/as/2022.3237.305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a set of general normality results for kernel weighted averages. We extend existing results in literature for independent data a s in Yao (2017) to stationary dependent longitudinal data. The asymptotic properties of the proposed weighted averages are investigated under \\\\(\\\\alpha\\\\)-mixing conditions. These results are useful for covariance function estimation based on nonparametric kernel method.\",\"PeriodicalId\":430341,\"journal\":{\"name\":\"Afrika Statistika\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Statistika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.16929/as/2022.3237.305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16929/as/2022.3237.305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Asymptotic normality for kernel weighted averages estimation
This paper presents a set of general normality results for kernel weighted averages. We extend existing results in literature for independent data a s in Yao (2017) to stationary dependent longitudinal data. The asymptotic properties of the proposed weighted averages are investigated under \(\alpha\)-mixing conditions. These results are useful for covariance function estimation based on nonparametric kernel method.