基于距离和密度的分层模糊聚类方法

Xiaoping Qiu, Yang Xu, Xiaobing Li
{"title":"基于距离和密度的分层模糊聚类方法","authors":"Xiaoping Qiu, Yang Xu, Xiaobing Li","doi":"10.1109/FSKD.2007.575","DOIUrl":null,"url":null,"abstract":"In this paper, a layered fuzzy clustering method based on distance and density (LFCDD) is summarized. The lowermost layer's algorithm deals with the original data points, the upper layer with the cluster centers of the nearest lower layer. In each layer it identifies the cluster number automatically. It calculates the density and density set of each data point based on distance matrix; then chooses one data point randomly and judges whether every element in the selected data point's density set is in the same cluster with itself, this process is repeated till all data points have been selected. In order to find the optimum value of the parameters, we adopt an objective function using entropy on the uppermost layer. Clustering analysis of LFCDD has been performed and the experimental results show that a high recognition rate can be achieved.","PeriodicalId":201883,"journal":{"name":"Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Layered Fuzzy Clustering Method Based on Distance and Density\",\"authors\":\"Xiaoping Qiu, Yang Xu, Xiaobing Li\",\"doi\":\"10.1109/FSKD.2007.575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a layered fuzzy clustering method based on distance and density (LFCDD) is summarized. The lowermost layer's algorithm deals with the original data points, the upper layer with the cluster centers of the nearest lower layer. In each layer it identifies the cluster number automatically. It calculates the density and density set of each data point based on distance matrix; then chooses one data point randomly and judges whether every element in the selected data point's density set is in the same cluster with itself, this process is repeated till all data points have been selected. In order to find the optimum value of the parameters, we adopt an objective function using entropy on the uppermost layer. Clustering analysis of LFCDD has been performed and the experimental results show that a high recognition rate can be achieved.\",\"PeriodicalId\":201883,\"journal\":{\"name\":\"Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)\",\"volume\":\"137 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSKD.2007.575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2007.575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文总结了一种基于距离和密度的分层模糊聚类方法。最下层的算法处理原始数据点,上层处理最近下层的聚类中心。在每一层中,它自动识别集群号。它根据距离矩阵计算每个数据点的密度和密度集;然后随机选择一个数据点,判断所选数据点的密度集中的每个元素是否都与自己在同一聚类中,重复这一过程,直到所有数据点都被选中。为了找到参数的最优值,我们在最上层采用了熵的目标函数。对LFCDD进行了聚类分析,实验结果表明该方法具有较高的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Layered Fuzzy Clustering Method Based on Distance and Density
In this paper, a layered fuzzy clustering method based on distance and density (LFCDD) is summarized. The lowermost layer's algorithm deals with the original data points, the upper layer with the cluster centers of the nearest lower layer. In each layer it identifies the cluster number automatically. It calculates the density and density set of each data point based on distance matrix; then chooses one data point randomly and judges whether every element in the selected data point's density set is in the same cluster with itself, this process is repeated till all data points have been selected. In order to find the optimum value of the parameters, we adopt an objective function using entropy on the uppermost layer. Clustering analysis of LFCDD has been performed and the experimental results show that a high recognition rate can be achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信