{"title":"$L_2$中若干类函数的宽度值与Jackson-Stechkin不等式","authors":"M. Shabozov, K. K. Palavonov","doi":"10.47910/femj202213","DOIUrl":null,"url":null,"abstract":"The sharp values of extremal characteristic of special form for classes $L_{2}^{(r)}$, $(r\\in\\mathbb{Z}_{+})$ containing not only averaged module of continuity but also the averaged with weight $u(t-u)/t$, $0\\le u\\le t$ of given modulus continuity is calculated. The obtained result is the spreading of well-known S. B. Vakarchuk theorem about averaged module of continuity. For the given characteristic of smoothness, is given an application for the solution of one extremal problem and the values of $n$-widths for some classes of functions in $L_2$ is calculated.","PeriodicalId":388451,"journal":{"name":"Dal'nevostochnyi Matematicheskii Zhurnal","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jackson-Stechkin Inequality and Values of Widths of Some Classes of Functions in $L_2$\",\"authors\":\"M. Shabozov, K. K. Palavonov\",\"doi\":\"10.47910/femj202213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sharp values of extremal characteristic of special form for classes $L_{2}^{(r)}$, $(r\\\\in\\\\mathbb{Z}_{+})$ containing not only averaged module of continuity but also the averaged with weight $u(t-u)/t$, $0\\\\le u\\\\le t$ of given modulus continuity is calculated. The obtained result is the spreading of well-known S. B. Vakarchuk theorem about averaged module of continuity. For the given characteristic of smoothness, is given an application for the solution of one extremal problem and the values of $n$-widths for some classes of functions in $L_2$ is calculated.\",\"PeriodicalId\":388451,\"journal\":{\"name\":\"Dal'nevostochnyi Matematicheskii Zhurnal\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dal'nevostochnyi Matematicheskii Zhurnal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47910/femj202213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dal'nevostochnyi Matematicheskii Zhurnal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47910/femj202213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
计算了一类$L_{2}^{(r)}$, $(r\in\mathbb{Z}_{+})$的特殊形式的极值特征值,该类不仅包含连续性的平均模,而且包含给定模连续性的加权平均值$u(t-u)/t$, $0\le u\le t$。所得结果推广了著名的关于连续平均模的S. B. Vakarchuk定理。针对给定的光滑性特征,给出了求解一类极值问题的一个应用,并计算了$L_2$中若干类函数的$n$-宽度的值。
Jackson-Stechkin Inequality and Values of Widths of Some Classes of Functions in $L_2$
The sharp values of extremal characteristic of special form for classes $L_{2}^{(r)}$, $(r\in\mathbb{Z}_{+})$ containing not only averaged module of continuity but also the averaged with weight $u(t-u)/t$, $0\le u\le t$ of given modulus continuity is calculated. The obtained result is the spreading of well-known S. B. Vakarchuk theorem about averaged module of continuity. For the given characteristic of smoothness, is given an application for the solution of one extremal problem and the values of $n$-widths for some classes of functions in $L_2$ is calculated.