OpenCL/SYCL内核中矢量化决策的机器学习

Wenju He, Yuxin Zou, Feng Zou
{"title":"OpenCL/SYCL内核中矢量化决策的机器学习","authors":"Wenju He, Yuxin Zou, Feng Zou","doi":"10.1145/3585341.3585364","DOIUrl":null,"url":null,"abstract":"Vectorization of OpenCL/SYCL kernel on CPU device could improve performance significantly. It utilizes single instruction multiple data (SIMD) instruction to process multiple work-items concurrently. However, some applications don't benefit from vectorization. Whether to do vectorization is a challenging problem, since it could vary from case to case. For OpenCL kernels, Intel SYCL CPU device currently uses heuristic to decide whether to discard vectorized kernel. This paper presents a machine learning approach to tackle this problem. Experimental result on Intel Xeon Cascade Lake CPU demonstrates the new approach is better than the heuristic approach.","PeriodicalId":360830,"journal":{"name":"Proceedings of the 2023 International Workshop on OpenCL","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning for Vectorization Decision in OpenCL/SYCL Kernel\",\"authors\":\"Wenju He, Yuxin Zou, Feng Zou\",\"doi\":\"10.1145/3585341.3585364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vectorization of OpenCL/SYCL kernel on CPU device could improve performance significantly. It utilizes single instruction multiple data (SIMD) instruction to process multiple work-items concurrently. However, some applications don't benefit from vectorization. Whether to do vectorization is a challenging problem, since it could vary from case to case. For OpenCL kernels, Intel SYCL CPU device currently uses heuristic to decide whether to discard vectorized kernel. This paper presents a machine learning approach to tackle this problem. Experimental result on Intel Xeon Cascade Lake CPU demonstrates the new approach is better than the heuristic approach.\",\"PeriodicalId\":360830,\"journal\":{\"name\":\"Proceedings of the 2023 International Workshop on OpenCL\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 International Workshop on OpenCL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3585341.3585364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 International Workshop on OpenCL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3585341.3585364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在CPU设备上对OpenCL/SYCL内核进行向量化可以显著提高性能。它利用单指令多数据(SIMD)指令并发处理多个工作项。然而,有些应用程序无法从向量化中获益。是否进行矢量化是一个具有挑战性的问题,因为它可能因情况而异。对于OpenCL内核,Intel SYCL CPU设备目前使用启发式方法来决定是否丢弃矢量化内核。本文提出了一种机器学习方法来解决这个问题。在Intel Xeon Cascade Lake CPU上的实验结果表明,该方法优于启发式方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning for Vectorization Decision in OpenCL/SYCL Kernel
Vectorization of OpenCL/SYCL kernel on CPU device could improve performance significantly. It utilizes single instruction multiple data (SIMD) instruction to process multiple work-items concurrently. However, some applications don't benefit from vectorization. Whether to do vectorization is a challenging problem, since it could vary from case to case. For OpenCL kernels, Intel SYCL CPU device currently uses heuristic to decide whether to discard vectorized kernel. This paper presents a machine learning approach to tackle this problem. Experimental result on Intel Xeon Cascade Lake CPU demonstrates the new approach is better than the heuristic approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信