基于神经网络的DNA芯片数据分析

J. Patra, Lei Wang, Ee-Luang Ang, N.S. Chaudhari
{"title":"基于神经网络的DNA芯片数据分析","authors":"J. Patra, Lei Wang, Ee-Luang Ang, N.S. Chaudhari","doi":"10.1109/IJCNN.2005.1555882","DOIUrl":null,"url":null,"abstract":"The analysis of DNA microarray expression data has become an important subject in bioinformatics. Scientists have adopted different approaches to select the informative genes those can distinguish different types of cancers. In this paper, we show the use of a dimension reduction technique such as singular value decomposition (SVD) to capture the genes with similar patterns. We propose a novel method of selection of feature genes based on information loss using SVD. To assign the samples to known classes, we design a multi-layer perceptron-based classifier with reduced dimensional input vectors. We provide performance comparison between different selection methods in terms of classification rate","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Neural network-based analysis of DNA microarray data\",\"authors\":\"J. Patra, Lei Wang, Ee-Luang Ang, N.S. Chaudhari\",\"doi\":\"10.1109/IJCNN.2005.1555882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The analysis of DNA microarray expression data has become an important subject in bioinformatics. Scientists have adopted different approaches to select the informative genes those can distinguish different types of cancers. In this paper, we show the use of a dimension reduction technique such as singular value decomposition (SVD) to capture the genes with similar patterns. We propose a novel method of selection of feature genes based on information loss using SVD. To assign the samples to known classes, we design a multi-layer perceptron-based classifier with reduced dimensional input vectors. We provide performance comparison between different selection methods in terms of classification rate\",\"PeriodicalId\":365690,\"journal\":{\"name\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2005.1555882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1555882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

DNA微阵列表达数据分析已成为生物信息学领域的重要课题。科学家们采用了不同的方法来选择能够区分不同类型癌症的信息基因。在本文中,我们展示了使用降维技术,如奇异值分解(SVD)来捕获具有相似模式的基因。提出了一种基于信息损失的奇异值分解特征基因选择方法。为了将样本分配到已知的类别,我们设计了一个基于多层感知器的分类器,该分类器具有降维输入向量。我们在分类率方面提供了不同选择方法之间的性能比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network-based analysis of DNA microarray data
The analysis of DNA microarray expression data has become an important subject in bioinformatics. Scientists have adopted different approaches to select the informative genes those can distinguish different types of cancers. In this paper, we show the use of a dimension reduction technique such as singular value decomposition (SVD) to capture the genes with similar patterns. We propose a novel method of selection of feature genes based on information loss using SVD. To assign the samples to known classes, we design a multi-layer perceptron-based classifier with reduced dimensional input vectors. We provide performance comparison between different selection methods in terms of classification rate
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信