基于Gabor特征的人脸特征提取完全fisher判别框架

Zhiqiang Zeng
{"title":"基于Gabor特征的人脸特征提取完全fisher判别框架","authors":"Zhiqiang Zeng","doi":"10.1109/WCSP.2009.5371732","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel feature extraction approach using Gabor feature based complete fisher discriminant algorithm (GCFD). Four main steps are involved in the proposed GCFD: (i) Gabor features of different scales and orientations are extracted by the convolution of Gabor filter bank and original gray images; (ii) Complete fisher discriminant algorithm (CFD) is used for feature dimensionality reduction and to extract all discrimination information; (iii) Feature fusion algorithm and Euclidean distance based nearest neighbor classifier are finally used for classification. (iv)Simulation results show the effectiveness of our proposed GCFD.","PeriodicalId":244652,"journal":{"name":"2009 International Conference on Wireless Communications & Signal Processing","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gabor feature-based complete fisher discriminant framework for facial feature extraction\",\"authors\":\"Zhiqiang Zeng\",\"doi\":\"10.1109/WCSP.2009.5371732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel feature extraction approach using Gabor feature based complete fisher discriminant algorithm (GCFD). Four main steps are involved in the proposed GCFD: (i) Gabor features of different scales and orientations are extracted by the convolution of Gabor filter bank and original gray images; (ii) Complete fisher discriminant algorithm (CFD) is used for feature dimensionality reduction and to extract all discrimination information; (iii) Feature fusion algorithm and Euclidean distance based nearest neighbor classifier are finally used for classification. (iv)Simulation results show the effectiveness of our proposed GCFD.\",\"PeriodicalId\":244652,\"journal\":{\"name\":\"2009 International Conference on Wireless Communications & Signal Processing\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Wireless Communications & Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCSP.2009.5371732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wireless Communications & Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2009.5371732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于Gabor特征的完全fisher判别算法(GCFD)的特征提取方法。该算法主要包括四个步骤:(1)通过Gabor滤波器组与原始灰度图像的卷积提取不同尺度和方向的Gabor特征;(ii)采用完全fisher判别算法(Complete fisher discriminant algorithm, CFD)进行特征降维,提取所有判别信息;(iii)最后使用特征融合算法和基于欧氏距离的最近邻分类器进行分类。(iv)仿真结果表明了本文提出的GCFD算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gabor feature-based complete fisher discriminant framework for facial feature extraction
In this paper, we propose a novel feature extraction approach using Gabor feature based complete fisher discriminant algorithm (GCFD). Four main steps are involved in the proposed GCFD: (i) Gabor features of different scales and orientations are extracted by the convolution of Gabor filter bank and original gray images; (ii) Complete fisher discriminant algorithm (CFD) is used for feature dimensionality reduction and to extract all discrimination information; (iii) Feature fusion algorithm and Euclidean distance based nearest neighbor classifier are finally used for classification. (iv)Simulation results show the effectiveness of our proposed GCFD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信