使用压缩和PSO的垃圾邮件检测

Michal Prilepok, T. Ježowicz, J. Platoš, V. Snás̃el
{"title":"使用压缩和PSO的垃圾邮件检测","authors":"Michal Prilepok, T. Ježowicz, J. Platoš, V. Snás̃el","doi":"10.1109/CASoN.2012.6412413","DOIUrl":null,"url":null,"abstract":"The problem of spam emails is still growing. Therefore, developing of algorithms which are able to solve this problem is also very active area. This paper presents two different algorithms for spam detection. The first algorithm is based on Bayesian filter, but it is improved using data compression algorithms in case that the Bayesian filter cannot decide. The second algorithm is based on document classification algorithm using Particle Swarm Optimization. Results of presented algorithms are promising.","PeriodicalId":431370,"journal":{"name":"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Spam detection using compression and PSO\",\"authors\":\"Michal Prilepok, T. Ježowicz, J. Platoš, V. Snás̃el\",\"doi\":\"10.1109/CASoN.2012.6412413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of spam emails is still growing. Therefore, developing of algorithms which are able to solve this problem is also very active area. This paper presents two different algorithms for spam detection. The first algorithm is based on Bayesian filter, but it is improved using data compression algorithms in case that the Bayesian filter cannot decide. The second algorithm is based on document classification algorithm using Particle Swarm Optimization. Results of presented algorithms are promising.\",\"PeriodicalId\":431370,\"journal\":{\"name\":\"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASoN.2012.6412413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASoN.2012.6412413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

垃圾邮件的问题仍在增长。因此,开发能够解决这一问题的算法也是一个非常活跃的领域。本文提出了两种不同的垃圾邮件检测算法。第一种算法是基于贝叶斯滤波的,但在贝叶斯滤波不能确定的情况下,使用数据压缩算法进行改进。第二种算法是基于粒子群算法的文档分类算法。所提出的算法的结果是有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spam detection using compression and PSO
The problem of spam emails is still growing. Therefore, developing of algorithms which are able to solve this problem is also very active area. This paper presents two different algorithms for spam detection. The first algorithm is based on Bayesian filter, but it is improved using data compression algorithms in case that the Bayesian filter cannot decide. The second algorithm is based on document classification algorithm using Particle Swarm Optimization. Results of presented algorithms are promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信