利用机器学习和人工神经网络预测沙特阿拉伯的太阳辐照度,实现高效网格整合

Subah M. Alkhaldi
{"title":"利用机器学习和人工神经网络预测沙特阿拉伯的太阳辐照度,实现高效网格整合","authors":"Subah M. Alkhaldi","doi":"10.1109/SASG57022.2022.10200610","DOIUrl":null,"url":null,"abstract":"Solar energy is becoming an essential part of the energy mix of several counties. However, there are challenges with implementing such renewable sources including intermittency, difficulty in managing energy flux, integrating & operating the power grid, and the implicit relationship between weather parameters and solar irradiance requiring data analysis techniques to be implemented. These techniques would uncover the hidden patterns and correlations between weather features (e.g., humidity, temperature and solar irradiance) to enhance solar irradiance prediction accuracies for efficient planning of electricity production of solar panels connected to the grid. Saudi Arabian weather features will be employed for prediction assessments of machine learning & artificial neural network algorithms with multiple data sources & public domain entities including Photovoltaic Geographical Information System (PVGIS), King Abdullah City for Atomic and Renewable Energy (KACARE), and the National Renewable Energy Laboratory (NREL).","PeriodicalId":206589,"journal":{"name":"2022 Saudi Arabia Smart Grid (SASG)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Solar Irradiance in Saudi Arabia via Machine Learning & Artificial Neural Networks for Efficient Grid Integration\",\"authors\":\"Subah M. Alkhaldi\",\"doi\":\"10.1109/SASG57022.2022.10200610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar energy is becoming an essential part of the energy mix of several counties. However, there are challenges with implementing such renewable sources including intermittency, difficulty in managing energy flux, integrating & operating the power grid, and the implicit relationship between weather parameters and solar irradiance requiring data analysis techniques to be implemented. These techniques would uncover the hidden patterns and correlations between weather features (e.g., humidity, temperature and solar irradiance) to enhance solar irradiance prediction accuracies for efficient planning of electricity production of solar panels connected to the grid. Saudi Arabian weather features will be employed for prediction assessments of machine learning & artificial neural network algorithms with multiple data sources & public domain entities including Photovoltaic Geographical Information System (PVGIS), King Abdullah City for Atomic and Renewable Energy (KACARE), and the National Renewable Energy Laboratory (NREL).\",\"PeriodicalId\":206589,\"journal\":{\"name\":\"2022 Saudi Arabia Smart Grid (SASG)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Saudi Arabia Smart Grid (SASG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SASG57022.2022.10200610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Saudi Arabia Smart Grid (SASG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASG57022.2022.10200610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

太阳能正在成为几个国家能源结构的重要组成部分。然而,实施这种可再生能源存在挑战,包括间歇性,管理能量通量的困难,整合和运行电网,以及需要实施数据分析技术的天气参数和太阳辐照度之间的隐含关系。这些技术将揭示天气特征(例如湿度、温度和太阳辐照度)之间的隐藏模式和相关性,以提高太阳辐照度预测的准确性,从而有效规划连接到电网的太阳能电池板的电力生产。沙特阿拉伯的天气特征将用于具有多个数据源和公共领域实体的机器学习和人工神经网络算法的预测评估,包括光伏地理信息系统(PVGIS)、阿卜杜拉国王原子和可再生能源城(KACARE)和国家可再生能源实验室(NREL)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Solar Irradiance in Saudi Arabia via Machine Learning & Artificial Neural Networks for Efficient Grid Integration
Solar energy is becoming an essential part of the energy mix of several counties. However, there are challenges with implementing such renewable sources including intermittency, difficulty in managing energy flux, integrating & operating the power grid, and the implicit relationship between weather parameters and solar irradiance requiring data analysis techniques to be implemented. These techniques would uncover the hidden patterns and correlations between weather features (e.g., humidity, temperature and solar irradiance) to enhance solar irradiance prediction accuracies for efficient planning of electricity production of solar panels connected to the grid. Saudi Arabian weather features will be employed for prediction assessments of machine learning & artificial neural network algorithms with multiple data sources & public domain entities including Photovoltaic Geographical Information System (PVGIS), King Abdullah City for Atomic and Renewable Energy (KACARE), and the National Renewable Energy Laboratory (NREL).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信