基于二维经验模态分解的消光人脸识别

Miguel A. Ochoa-Villegas, J. Nolazco-Flores, Olivia Barron-Cano, I. Kakadiaris
{"title":"基于二维经验模态分解的消光人脸识别","authors":"Miguel A. Ochoa-Villegas, J. Nolazco-Flores, Olivia Barron-Cano, I. Kakadiaris","doi":"10.1109/WIFS.2014.7084297","DOIUrl":null,"url":null,"abstract":"A face recognition system must be capable of handling facial data with head pose variations or different illumination conditions. However, as these conditions are uncontrolled the requirement of better algorithms has become essential. We propose a Bidimensional Empirical Mode Decomposition-based unlighting method that preprocesses the luminance and the reflectance parts of an image. First, three luminance components are estimated using Bidimensional Intrinsic Mode Functions residuals. Second, a shadow removal procedure using recursive Retinex is applied. Third, the reflectance part is denoised using mean-Gaussian filters. After that, a new image is created multiplying each shadow-free luminance by the reflectance. The final output is obtained using the geometric mean on the newly acquired images. This algorithm has been tested in two 3D- 2D face recognition databases: UHDB11 and FRGCv2.0. The performance of BEMDU demonstrates an improvement of up to 15.42% when compared with the AELM, LBEMD, PittPatt, the baseline, and EA algorithms.","PeriodicalId":220523,"journal":{"name":"2014 IEEE International Workshop on Information Forensics and Security (WIFS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bidimensional empirical mode decomposition-based unlighting for face recognition\",\"authors\":\"Miguel A. Ochoa-Villegas, J. Nolazco-Flores, Olivia Barron-Cano, I. Kakadiaris\",\"doi\":\"10.1109/WIFS.2014.7084297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A face recognition system must be capable of handling facial data with head pose variations or different illumination conditions. However, as these conditions are uncontrolled the requirement of better algorithms has become essential. We propose a Bidimensional Empirical Mode Decomposition-based unlighting method that preprocesses the luminance and the reflectance parts of an image. First, three luminance components are estimated using Bidimensional Intrinsic Mode Functions residuals. Second, a shadow removal procedure using recursive Retinex is applied. Third, the reflectance part is denoised using mean-Gaussian filters. After that, a new image is created multiplying each shadow-free luminance by the reflectance. The final output is obtained using the geometric mean on the newly acquired images. This algorithm has been tested in two 3D- 2D face recognition databases: UHDB11 and FRGCv2.0. The performance of BEMDU demonstrates an improvement of up to 15.42% when compared with the AELM, LBEMD, PittPatt, the baseline, and EA algorithms.\",\"PeriodicalId\":220523,\"journal\":{\"name\":\"2014 IEEE International Workshop on Information Forensics and Security (WIFS)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Workshop on Information Forensics and Security (WIFS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIFS.2014.7084297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Workshop on Information Forensics and Security (WIFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIFS.2014.7084297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人脸识别系统必须能够处理头部姿势变化或不同光照条件下的面部数据。然而,由于这些条件是不受控制的,对更好的算法的要求变得至关重要。我们提出了一种基于二维经验模式分解的消光方法,该方法对图像的亮度和反射率部分进行预处理。首先,利用二维本征模态函数残差估计三个亮度分量。其次,使用递归视网膜进行阴影去除。第三,利用均值高斯滤波器对反射部分进行去噪。在那之后,一个新的图像被创建乘以每个无阴影亮度的反射率。对新获取的图像进行几何平均,得到最终输出。该算法已在两个3D- 2D人脸识别数据库UHDB11和FRGCv2.0中进行了测试。与AELM、LBEMD、PittPatt、基线和EA算法相比,BEMDU算法的性能提高了15.42%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bidimensional empirical mode decomposition-based unlighting for face recognition
A face recognition system must be capable of handling facial data with head pose variations or different illumination conditions. However, as these conditions are uncontrolled the requirement of better algorithms has become essential. We propose a Bidimensional Empirical Mode Decomposition-based unlighting method that preprocesses the luminance and the reflectance parts of an image. First, three luminance components are estimated using Bidimensional Intrinsic Mode Functions residuals. Second, a shadow removal procedure using recursive Retinex is applied. Third, the reflectance part is denoised using mean-Gaussian filters. After that, a new image is created multiplying each shadow-free luminance by the reflectance. The final output is obtained using the geometric mean on the newly acquired images. This algorithm has been tested in two 3D- 2D face recognition databases: UHDB11 and FRGCv2.0. The performance of BEMDU demonstrates an improvement of up to 15.42% when compared with the AELM, LBEMD, PittPatt, the baseline, and EA algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信