{"title":"自动音乐播放列表生成中的偏差:下一首曲目推荐技术的比较","authors":"D. Jannach, Iman Kamehkhosh, Geoffray Bonnin","doi":"10.1145/2930238.2930283","DOIUrl":null,"url":null,"abstract":"Playlist generation is a special form of music recommendation where the problem is to create a sequence of tracks to be played next, given a number of seed tracks. In academia, the evaluation of playlisting techniques is often done by assessing with the help of information retrieval measures if an algorithm is capable of selecting those tracks that also a human would pick next. Such approaches however cannot capture other factors, e.g., the homogeneity of the tracks that can determine the quality perception of playlists. In this work, we report the results of a multi-metric comparison of different academic approaches and a commercial playlisting service. Our results show that all tested techniques generate playlists with certain biases, e.g., towards very popular tracks, and often create playlists continuations that are quite different from those that are created by real users.","PeriodicalId":339100,"journal":{"name":"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Biases in Automated Music Playlist Generation: A Comparison of Next-Track Recommending Techniques\",\"authors\":\"D. Jannach, Iman Kamehkhosh, Geoffray Bonnin\",\"doi\":\"10.1145/2930238.2930283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Playlist generation is a special form of music recommendation where the problem is to create a sequence of tracks to be played next, given a number of seed tracks. In academia, the evaluation of playlisting techniques is often done by assessing with the help of information retrieval measures if an algorithm is capable of selecting those tracks that also a human would pick next. Such approaches however cannot capture other factors, e.g., the homogeneity of the tracks that can determine the quality perception of playlists. In this work, we report the results of a multi-metric comparison of different academic approaches and a commercial playlisting service. Our results show that all tested techniques generate playlists with certain biases, e.g., towards very popular tracks, and often create playlists continuations that are quite different from those that are created by real users.\",\"PeriodicalId\":339100,\"journal\":{\"name\":\"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2930238.2930283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2930238.2930283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biases in Automated Music Playlist Generation: A Comparison of Next-Track Recommending Techniques
Playlist generation is a special form of music recommendation where the problem is to create a sequence of tracks to be played next, given a number of seed tracks. In academia, the evaluation of playlisting techniques is often done by assessing with the help of information retrieval measures if an algorithm is capable of selecting those tracks that also a human would pick next. Such approaches however cannot capture other factors, e.g., the homogeneity of the tracks that can determine the quality perception of playlists. In this work, we report the results of a multi-metric comparison of different academic approaches and a commercial playlisting service. Our results show that all tested techniques generate playlists with certain biases, e.g., towards very popular tracks, and often create playlists continuations that are quite different from those that are created by real users.