自动多传感器图像配准

K. Walli
{"title":"自动多传感器图像配准","authors":"K. Walli","doi":"10.1109/AIPR.2003.1284257","DOIUrl":null,"url":null,"abstract":"This paper develops a technique for the registration of multisensor images utilizing the Laplacian of Gaussian (LoG) filter to automatically determine semi-invariant ground control points (GCPs). These points are then related through the development of point matching techniques and statistical analysis. Through the use of matrix transformations, efficient management of multiple affine operations can be obtained and stored in a composite transform. Wavelet theory is used to enable the multi-resolution analysis critical for multisensor image registration and predictive transformations. Multiple methods have been discussed to test the accuracy of the resulting image registration. Benefits of this technique against parallax and moving objects within the scene has also been highlighted. Finally, an example of 'wavelet sharpening' has been demonstrated that preserves radiometric integrity.","PeriodicalId":176987,"journal":{"name":"32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Automated multisensor image registration\",\"authors\":\"K. Walli\",\"doi\":\"10.1109/AIPR.2003.1284257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops a technique for the registration of multisensor images utilizing the Laplacian of Gaussian (LoG) filter to automatically determine semi-invariant ground control points (GCPs). These points are then related through the development of point matching techniques and statistical analysis. Through the use of matrix transformations, efficient management of multiple affine operations can be obtained and stored in a composite transform. Wavelet theory is used to enable the multi-resolution analysis critical for multisensor image registration and predictive transformations. Multiple methods have been discussed to test the accuracy of the resulting image registration. Benefits of this technique against parallax and moving objects within the scene has also been highlighted. Finally, an example of 'wavelet sharpening' has been demonstrated that preserves radiometric integrity.\",\"PeriodicalId\":176987,\"journal\":{\"name\":\"32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings.\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2003.1284257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2003.1284257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种利用拉普拉斯高斯滤波(LoG)自动确定半不变地面控制点(gcp)的多传感器图像配准技术。然后通过点匹配技术和统计分析的发展将这些点联系起来。通过使用矩阵变换,可以获得多个仿射操作的有效管理,并将其存储在复合变换中。小波理论用于实现多分辨率分析,这对多传感器图像配准和预测变换至关重要。讨论了多种方法来测试图像配准的准确性。这种技术对视差和场景中移动物体的好处也被强调了。最后,一个“小波锐化”的例子已经证明,保持辐射完整性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated multisensor image registration
This paper develops a technique for the registration of multisensor images utilizing the Laplacian of Gaussian (LoG) filter to automatically determine semi-invariant ground control points (GCPs). These points are then related through the development of point matching techniques and statistical analysis. Through the use of matrix transformations, efficient management of multiple affine operations can be obtained and stored in a composite transform. Wavelet theory is used to enable the multi-resolution analysis critical for multisensor image registration and predictive transformations. Multiple methods have been discussed to test the accuracy of the resulting image registration. Benefits of this technique against parallax and moving objects within the scene has also been highlighted. Finally, an example of 'wavelet sharpening' has been demonstrated that preserves radiometric integrity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信