{"title":"光致差太赫兹光谱学及其生物医学应用","authors":"Y.C. Shen, P. Upadhya, A. Davies, E. Linfield","doi":"10.1109/THZ.2002.1037618","DOIUrl":null,"url":null,"abstract":"Laser-induced difference THz spectroscopy has been used to investigate three samples with different lifetimes. The spectroscopy system is based on a 10 nJ titanium sapphire laser with a pulse duration of 12 fs and a centre wavelength of 790 nm. For semi-insulting (SI) GaAs and high-resistivity (HR) silicon samples, absorption in the THz range is mainly a result of mobile electrons. A lifetime of about 50 ps has been determined for the SI-GaAs sample, whereas the lifetime of the HR-Si samples was found to be much larger than the time interval between two successive laser pulses (12 ns). As a result, the differential THz signal is about twenty times larger than that for SI-GaAs. We also observed that the THz pulse arrives at the detector 100 fs earlier when it transmitted through an optically excited HR-Si wafer. For copper pathancyonine (CuPc) pellet samples, the excited state remains for at least 1 ms. The absorption peak at 1.08 THz changes significantly under 790 nm laser excitation, suggesting that we have observed the first evidence of light-induced vibrational mode changes, in the THz range.","PeriodicalId":143116,"journal":{"name":"Proceedings, IEEE Tenth International Conference on Terahertz Electronics","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Light-induced difference Terahertz spectroscopy and its biomedical applications\",\"authors\":\"Y.C. Shen, P. Upadhya, A. Davies, E. Linfield\",\"doi\":\"10.1109/THZ.2002.1037618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Laser-induced difference THz spectroscopy has been used to investigate three samples with different lifetimes. The spectroscopy system is based on a 10 nJ titanium sapphire laser with a pulse duration of 12 fs and a centre wavelength of 790 nm. For semi-insulting (SI) GaAs and high-resistivity (HR) silicon samples, absorption in the THz range is mainly a result of mobile electrons. A lifetime of about 50 ps has been determined for the SI-GaAs sample, whereas the lifetime of the HR-Si samples was found to be much larger than the time interval between two successive laser pulses (12 ns). As a result, the differential THz signal is about twenty times larger than that for SI-GaAs. We also observed that the THz pulse arrives at the detector 100 fs earlier when it transmitted through an optically excited HR-Si wafer. For copper pathancyonine (CuPc) pellet samples, the excited state remains for at least 1 ms. The absorption peak at 1.08 THz changes significantly under 790 nm laser excitation, suggesting that we have observed the first evidence of light-induced vibrational mode changes, in the THz range.\",\"PeriodicalId\":143116,\"journal\":{\"name\":\"Proceedings, IEEE Tenth International Conference on Terahertz Electronics\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings, IEEE Tenth International Conference on Terahertz Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/THZ.2002.1037618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings, IEEE Tenth International Conference on Terahertz Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THZ.2002.1037618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Light-induced difference Terahertz spectroscopy and its biomedical applications
Laser-induced difference THz spectroscopy has been used to investigate three samples with different lifetimes. The spectroscopy system is based on a 10 nJ titanium sapphire laser with a pulse duration of 12 fs and a centre wavelength of 790 nm. For semi-insulting (SI) GaAs and high-resistivity (HR) silicon samples, absorption in the THz range is mainly a result of mobile electrons. A lifetime of about 50 ps has been determined for the SI-GaAs sample, whereas the lifetime of the HR-Si samples was found to be much larger than the time interval between two successive laser pulses (12 ns). As a result, the differential THz signal is about twenty times larger than that for SI-GaAs. We also observed that the THz pulse arrives at the detector 100 fs earlier when it transmitted through an optically excited HR-Si wafer. For copper pathancyonine (CuPc) pellet samples, the excited state remains for at least 1 ms. The absorption peak at 1.08 THz changes significantly under 790 nm laser excitation, suggesting that we have observed the first evidence of light-induced vibrational mode changes, in the THz range.