为HPC环境调整MapReduce

Zacharia Fadika, Elif Dede, M. Govindaraju, L. Ramakrishnan
{"title":"为HPC环境调整MapReduce","authors":"Zacharia Fadika, Elif Dede, M. Govindaraju, L. Ramakrishnan","doi":"10.1145/1996130.1996166","DOIUrl":null,"url":null,"abstract":"MapReduce is increasingly gaining popularity as a programming model for use in large-scale distributed processing. The model is most widely used when implemented using the Hadoop Distributed File System (HDFS). The use of the HDFS, however, precludes the direct applicability of the model to HPC environments, which use high performance distributed file systems. In such distributed environments, the MapReduce model can rarely make use of full resources, as local disks may not be available for data placement on all the nodes. This work proposes a MapReduce implementation and design choices directly suitable for such HPC environments.","PeriodicalId":330072,"journal":{"name":"IEEE International Symposium on High-Performance Parallel Distributed Computing","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Adapting MapReduce for HPC environments\",\"authors\":\"Zacharia Fadika, Elif Dede, M. Govindaraju, L. Ramakrishnan\",\"doi\":\"10.1145/1996130.1996166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MapReduce is increasingly gaining popularity as a programming model for use in large-scale distributed processing. The model is most widely used when implemented using the Hadoop Distributed File System (HDFS). The use of the HDFS, however, precludes the direct applicability of the model to HPC environments, which use high performance distributed file systems. In such distributed environments, the MapReduce model can rarely make use of full resources, as local disks may not be available for data placement on all the nodes. This work proposes a MapReduce implementation and design choices directly suitable for such HPC environments.\",\"PeriodicalId\":330072,\"journal\":{\"name\":\"IEEE International Symposium on High-Performance Parallel Distributed Computing\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Symposium on High-Performance Parallel Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1996130.1996166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on High-Performance Parallel Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1996130.1996166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

MapReduce作为一种用于大规模分布式处理的编程模型越来越受欢迎。该模型在使用HDFS (Hadoop Distributed File System)实现时使用最为广泛。然而,HDFS的使用阻碍了该模型直接适用于使用高性能分布式文件系统的HPC环境。在这种分布式环境中,MapReduce模型很少能够充分利用资源,因为本地磁盘可能无法用于在所有节点上放置数据。这项工作提出了一个MapReduce实现和设计选择,直接适用于这种高性能计算环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adapting MapReduce for HPC environments
MapReduce is increasingly gaining popularity as a programming model for use in large-scale distributed processing. The model is most widely used when implemented using the Hadoop Distributed File System (HDFS). The use of the HDFS, however, precludes the direct applicability of the model to HPC environments, which use high performance distributed file systems. In such distributed environments, the MapReduce model can rarely make use of full resources, as local disks may not be available for data placement on all the nodes. This work proposes a MapReduce implementation and design choices directly suitable for such HPC environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信