混合识别强度非线性模型的一致推理

Xu Cheng
{"title":"混合识别强度非线性模型的一致推理","authors":"Xu Cheng","doi":"10.2139/ssrn.2435179","DOIUrl":null,"url":null,"abstract":"The paper studies inference in nonlinear models where identification loss presents in multiple parts of the parameter space. For uniform inference, we develop a local limit theory that models mixed identification strength. Building on this non-standard asymptotic approximation, we suggest robust tests and confidence intervals in the presence of non-identified and weakly identified nuisance parameters. In particular, this covers applications where some nuisance parameters are non-identified under the null (Davies (1977, 1987)) and some nuisance parameters are subject to a full range of identification strength. The asymptotic results involve both inconsistent estimators that depend on a localization parameter and consistent estimators with different rates of convergence. A sequential argument is used to peel the criterion function based on identification strength of the parameters. The robust test is uniformly valid and non-conservative.","PeriodicalId":106740,"journal":{"name":"ERN: Other Econometrics: Econometric Model Construction","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Uniform Inference in Nonlinear Models with Mixed Identification Strength\",\"authors\":\"Xu Cheng\",\"doi\":\"10.2139/ssrn.2435179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper studies inference in nonlinear models where identification loss presents in multiple parts of the parameter space. For uniform inference, we develop a local limit theory that models mixed identification strength. Building on this non-standard asymptotic approximation, we suggest robust tests and confidence intervals in the presence of non-identified and weakly identified nuisance parameters. In particular, this covers applications where some nuisance parameters are non-identified under the null (Davies (1977, 1987)) and some nuisance parameters are subject to a full range of identification strength. The asymptotic results involve both inconsistent estimators that depend on a localization parameter and consistent estimators with different rates of convergence. A sequential argument is used to peel the criterion function based on identification strength of the parameters. The robust test is uniformly valid and non-conservative.\",\"PeriodicalId\":106740,\"journal\":{\"name\":\"ERN: Other Econometrics: Econometric Model Construction\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Econometric Model Construction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2435179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Econometric Model Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2435179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文研究了非线性模型中辨识损失分布在多个参数空间的推理问题。为了统一推理,我们建立了混合识别强度模型的局部极限理论。在这个非标准渐近近似的基础上,我们建议在存在未识别和弱识别的干扰参数时进行鲁棒检验和置信区间。特别是,这涵盖了在null (Davies(1977,1987))下未识别某些妨害参数的应用,以及一些妨害参数受制于全范围识别强度的应用。渐近结果包括依赖于局部化参数的不一致估计量和具有不同收敛速率的一致估计量。根据参数的识别强度,使用顺序参数剥离准则函数。稳健检验是一致有效和非保守的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform Inference in Nonlinear Models with Mixed Identification Strength
The paper studies inference in nonlinear models where identification loss presents in multiple parts of the parameter space. For uniform inference, we develop a local limit theory that models mixed identification strength. Building on this non-standard asymptotic approximation, we suggest robust tests and confidence intervals in the presence of non-identified and weakly identified nuisance parameters. In particular, this covers applications where some nuisance parameters are non-identified under the null (Davies (1977, 1987)) and some nuisance parameters are subject to a full range of identification strength. The asymptotic results involve both inconsistent estimators that depend on a localization parameter and consistent estimators with different rates of convergence. A sequential argument is used to peel the criterion function based on identification strength of the parameters. The robust test is uniformly valid and non-conservative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信