两种传感器数据在目标跟踪中的融合

Yaping Dai, Jie Chen, Xiaodong Liu
{"title":"两种传感器数据在目标跟踪中的融合","authors":"Yaping Dai, Jie Chen, Xiaodong Liu","doi":"10.1109/SICE.2001.977838","DOIUrl":null,"url":null,"abstract":"Describes an algorithm for fusion of tracks created by two kinds of sensor (radar and IR), these measurement data are obtained with different dimensions and different sample rates. By means of the time matching technique, two asynchronous data are fused and then the filter is updated according to the fused information. The rotation Kalman filter algorithm for data fusion is discussed; this approach can effectively solve the problem of nonlinear measurement and reduce the load of calculation.","PeriodicalId":415046,"journal":{"name":"SICE 2001. Proceedings of the 40th SICE Annual Conference. International Session Papers (IEEE Cat. No.01TH8603)","volume":"246 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Two kinds of sensor data fusion in target tracking\",\"authors\":\"Yaping Dai, Jie Chen, Xiaodong Liu\",\"doi\":\"10.1109/SICE.2001.977838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Describes an algorithm for fusion of tracks created by two kinds of sensor (radar and IR), these measurement data are obtained with different dimensions and different sample rates. By means of the time matching technique, two asynchronous data are fused and then the filter is updated according to the fused information. The rotation Kalman filter algorithm for data fusion is discussed; this approach can effectively solve the problem of nonlinear measurement and reduce the load of calculation.\",\"PeriodicalId\":415046,\"journal\":{\"name\":\"SICE 2001. Proceedings of the 40th SICE Annual Conference. International Session Papers (IEEE Cat. No.01TH8603)\",\"volume\":\"246 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SICE 2001. Proceedings of the 40th SICE Annual Conference. International Session Papers (IEEE Cat. No.01TH8603)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SICE.2001.977838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE 2001. Proceedings of the 40th SICE Annual Conference. International Session Papers (IEEE Cat. No.01TH8603)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.2001.977838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

介绍了一种融合两种传感器(雷达和红外)产生的航迹的算法,得到了不同尺寸和不同采样率的测量数据。采用时间匹配技术对两个异步数据进行融合,并根据融合后的信息更新滤波器。讨论了用于数据融合的旋转卡尔曼滤波算法;该方法有效地解决了测量的非线性问题,减少了计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two kinds of sensor data fusion in target tracking
Describes an algorithm for fusion of tracks created by two kinds of sensor (radar and IR), these measurement data are obtained with different dimensions and different sample rates. By means of the time matching technique, two asynchronous data are fused and then the filter is updated according to the fused information. The rotation Kalman filter algorithm for data fusion is discussed; this approach can effectively solve the problem of nonlinear measurement and reduce the load of calculation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信