Kentaro Orimo, Kota Ando, Kodai Ueyoshi, M. Ikebe, T. Asai, M. Motomura
{"title":"面向长期时间序列预测的前馈顺序存储网络的FPGA结构","authors":"Kentaro Orimo, Kota Ando, Kodai Ueyoshi, M. Ikebe, T. Asai, M. Motomura","doi":"10.1109/ReConFig.2016.7857169","DOIUrl":null,"url":null,"abstract":"Deep learning is being widely used in various applications, and diverse neural networks have been proposed. A form of neural network, such as the novel feed-forward sequential memory network (FSMN), aims to forecast prospective data by extracting the time-series feature. FSMN is a standard feed-forward neural network equipped with time-domain filters, and it can forecast without recurrent feedback. In this paper, we propose a field-programmable gate-array (FPGA) architecture for this model, and exhibit that the resource does not increase exponentially as the network scale increases.","PeriodicalId":431909,"journal":{"name":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"FPGA architecture for feed-forward sequential memory network targeting long-term time-series forecasting\",\"authors\":\"Kentaro Orimo, Kota Ando, Kodai Ueyoshi, M. Ikebe, T. Asai, M. Motomura\",\"doi\":\"10.1109/ReConFig.2016.7857169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning is being widely used in various applications, and diverse neural networks have been proposed. A form of neural network, such as the novel feed-forward sequential memory network (FSMN), aims to forecast prospective data by extracting the time-series feature. FSMN is a standard feed-forward neural network equipped with time-domain filters, and it can forecast without recurrent feedback. In this paper, we propose a field-programmable gate-array (FPGA) architecture for this model, and exhibit that the resource does not increase exponentially as the network scale increases.\",\"PeriodicalId\":431909,\"journal\":{\"name\":\"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ReConFig.2016.7857169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReConFig.2016.7857169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep learning is being widely used in various applications, and diverse neural networks have been proposed. A form of neural network, such as the novel feed-forward sequential memory network (FSMN), aims to forecast prospective data by extracting the time-series feature. FSMN is a standard feed-forward neural network equipped with time-domain filters, and it can forecast without recurrent feedback. In this paper, we propose a field-programmable gate-array (FPGA) architecture for this model, and exhibit that the resource does not increase exponentially as the network scale increases.