{"title":"并行科学计算的实例研究:边界元法在分布式存储多计算机上的应用","authors":"R. Natarajan, D. Krishnaswamy","doi":"10.1145/224170.224277","DOIUrl":null,"url":null,"abstract":"The Boundary Element Method is a widely-used discretization technique for solving boundary-value problems in engineering analysis. The solution of large problems by this method is limited by the storage and computational requirements for the generation and solution of large matrix systems resulting from the discretization. We discuss the implementation of these computations on the IBM SP-2 distributed-memory parallel computer, for applications involving the 3DD Laplace and Helmholtz equations.","PeriodicalId":269909,"journal":{"name":"Proceedings of the IEEE/ACM SC95 Conference","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A Case Study in Parallel Scientific Computing: The Boundary Element Method on a Distributed-Memory Multicomputer\",\"authors\":\"R. Natarajan, D. Krishnaswamy\",\"doi\":\"10.1145/224170.224277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Boundary Element Method is a widely-used discretization technique for solving boundary-value problems in engineering analysis. The solution of large problems by this method is limited by the storage and computational requirements for the generation and solution of large matrix systems resulting from the discretization. We discuss the implementation of these computations on the IBM SP-2 distributed-memory parallel computer, for applications involving the 3DD Laplace and Helmholtz equations.\",\"PeriodicalId\":269909,\"journal\":{\"name\":\"Proceedings of the IEEE/ACM SC95 Conference\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE/ACM SC95 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/224170.224277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE/ACM SC95 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/224170.224277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Case Study in Parallel Scientific Computing: The Boundary Element Method on a Distributed-Memory Multicomputer
The Boundary Element Method is a widely-used discretization technique for solving boundary-value problems in engineering analysis. The solution of large problems by this method is limited by the storage and computational requirements for the generation and solution of large matrix systems resulting from the discretization. We discuss the implementation of these computations on the IBM SP-2 distributed-memory parallel computer, for applications involving the 3DD Laplace and Helmholtz equations.