{"title":"i -微积分的名义语义","authors":"A. Alexandru, Gabriel Ciobanu","doi":"10.1109/SYNASC.2011.19","DOIUrl":null,"url":null,"abstract":"We present a new semantics of the piI-calculus, namely the nominal semantics. A set of compact transition rules is given in terms of nominal logic by using a nominal quantifier. We prove an equivalence between the new nominal semantics and the original semantics of the piI-calculus provided by Sangiorgi, emphasizing the benefits of presenting the transition rules by using the nominal techniques.","PeriodicalId":184344,"journal":{"name":"2011 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nominal Semantics of the pi I-calculus\",\"authors\":\"A. Alexandru, Gabriel Ciobanu\",\"doi\":\"10.1109/SYNASC.2011.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new semantics of the piI-calculus, namely the nominal semantics. A set of compact transition rules is given in terms of nominal logic by using a nominal quantifier. We prove an equivalence between the new nominal semantics and the original semantics of the piI-calculus provided by Sangiorgi, emphasizing the benefits of presenting the transition rules by using the nominal techniques.\",\"PeriodicalId\":184344,\"journal\":{\"name\":\"2011 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2011.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2011.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present a new semantics of the piI-calculus, namely the nominal semantics. A set of compact transition rules is given in terms of nominal logic by using a nominal quantifier. We prove an equivalence between the new nominal semantics and the original semantics of the piI-calculus provided by Sangiorgi, emphasizing the benefits of presenting the transition rules by using the nominal techniques.