i -微积分的名义语义

A. Alexandru, Gabriel Ciobanu
{"title":"i -微积分的名义语义","authors":"A. Alexandru, Gabriel Ciobanu","doi":"10.1109/SYNASC.2011.19","DOIUrl":null,"url":null,"abstract":"We present a new semantics of the piI-calculus, namely the nominal semantics. A set of compact transition rules is given in terms of nominal logic by using a nominal quantifier. We prove an equivalence between the new nominal semantics and the original semantics of the piI-calculus provided by Sangiorgi, emphasizing the benefits of presenting the transition rules by using the nominal techniques.","PeriodicalId":184344,"journal":{"name":"2011 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nominal Semantics of the pi I-calculus\",\"authors\":\"A. Alexandru, Gabriel Ciobanu\",\"doi\":\"10.1109/SYNASC.2011.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new semantics of the piI-calculus, namely the nominal semantics. A set of compact transition rules is given in terms of nominal logic by using a nominal quantifier. We prove an equivalence between the new nominal semantics and the original semantics of the piI-calculus provided by Sangiorgi, emphasizing the benefits of presenting the transition rules by using the nominal techniques.\",\"PeriodicalId\":184344,\"journal\":{\"name\":\"2011 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2011.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2011.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了pii -微积分的一种新的语义,即标称语义。利用标称量词,从标称逻辑的角度给出了一组紧凑的转换规则。我们证明了新的标称语义与Sangiorgi提供的pi -微积分的原始语义之间的等价性,强调了使用标称技术表示转换规则的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nominal Semantics of the pi I-calculus
We present a new semantics of the piI-calculus, namely the nominal semantics. A set of compact transition rules is given in terms of nominal logic by using a nominal quantifier. We prove an equivalence between the new nominal semantics and the original semantics of the piI-calculus provided by Sangiorgi, emphasizing the benefits of presenting the transition rules by using the nominal techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信