基于卷积自编码和下界估计的剩余使用寿命区间预测

Yi Lyu, Qichen Zhang, Aiguo Chen, Zhenfei Wen
{"title":"基于卷积自编码和下界估计的剩余使用寿命区间预测","authors":"Yi Lyu, Qichen Zhang, Aiguo Chen, Zhenfei Wen","doi":"10.17531/ein/165811","DOIUrl":null,"url":null,"abstract":"Deep learning is widely used in remaining useful life (RUL) prediction\nbecause it does not require prior knowledge and has strong nonlinear\nfitting ability. However, most of the existing prediction methods are\npoint prediction. In practical engineering applications, confidence\ninterval of RUL prediction is more important for maintenance strategies.\nThis paper proposes an interval prediction model based on Long ShortTerm Memory (LSTM) and lower upper bound estimation (LUBE) for\nRUL prediction. First, convolutional auto-encode network is used to\nencode the multi-dimensional sensor data into one-dimensional features,\nwhich can well represent the main degradation trend. Then, the features\nare input into the prediction framework composed of LSTM and LUBE\nfor RUL interval prediction, which effectively solves the defect that the\ntraditional LUBE network cannot analyze the internal time dependence\nof time series. In the experiment section, a case study is conducted using\nthe turbofan engine data set CMAPSS, and the advantage is validated by\ncarrying out a comparison with other methods.","PeriodicalId":335030,"journal":{"name":"Eksploatacja i Niezawodność – Maintenance and Reliability","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Interval Prediction of Remaining Useful Life based on Convolutional Auto-Encode and Lower Upper Bound Estimation\",\"authors\":\"Yi Lyu, Qichen Zhang, Aiguo Chen, Zhenfei Wen\",\"doi\":\"10.17531/ein/165811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning is widely used in remaining useful life (RUL) prediction\\nbecause it does not require prior knowledge and has strong nonlinear\\nfitting ability. However, most of the existing prediction methods are\\npoint prediction. In practical engineering applications, confidence\\ninterval of RUL prediction is more important for maintenance strategies.\\nThis paper proposes an interval prediction model based on Long ShortTerm Memory (LSTM) and lower upper bound estimation (LUBE) for\\nRUL prediction. First, convolutional auto-encode network is used to\\nencode the multi-dimensional sensor data into one-dimensional features,\\nwhich can well represent the main degradation trend. Then, the features\\nare input into the prediction framework composed of LSTM and LUBE\\nfor RUL interval prediction, which effectively solves the defect that the\\ntraditional LUBE network cannot analyze the internal time dependence\\nof time series. In the experiment section, a case study is conducted using\\nthe turbofan engine data set CMAPSS, and the advantage is validated by\\ncarrying out a comparison with other methods.\",\"PeriodicalId\":335030,\"journal\":{\"name\":\"Eksploatacja i Niezawodność – Maintenance and Reliability\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eksploatacja i Niezawodność – Maintenance and Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17531/ein/165811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eksploatacja i Niezawodność – Maintenance and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17531/ein/165811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

深度学习由于不需要先验知识和具有较强的非线性拟合能力,在剩余使用寿命预测中得到了广泛的应用。然而,现有的预测方法大多是点预测。在实际工程应用中,RUL预测的置信区间对维修策略更为重要。本文提出了一种基于长短期记忆(LSTM)和下界估计(LUBE)的区间预测模型。首先,利用卷积自编码网络将传感器的多维数据编码为能很好地表征主要退化趋势的一维特征;然后,将特征输入到LSTM和luben组成的预测框架中进行RUL区间预测,有效解决了传统luben网络无法分析时间序列内部时间相关性的缺陷。在实验部分,以涡扇发动机数据集CMAPSS为例,与其他方法进行了对比,验证了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interval Prediction of Remaining Useful Life based on Convolutional Auto-Encode and Lower Upper Bound Estimation
Deep learning is widely used in remaining useful life (RUL) prediction because it does not require prior knowledge and has strong nonlinear fitting ability. However, most of the existing prediction methods are point prediction. In practical engineering applications, confidence interval of RUL prediction is more important for maintenance strategies. This paper proposes an interval prediction model based on Long ShortTerm Memory (LSTM) and lower upper bound estimation (LUBE) for RUL prediction. First, convolutional auto-encode network is used to encode the multi-dimensional sensor data into one-dimensional features, which can well represent the main degradation trend. Then, the features are input into the prediction framework composed of LSTM and LUBE for RUL interval prediction, which effectively solves the defect that the traditional LUBE network cannot analyze the internal time dependence of time series. In the experiment section, a case study is conducted using the turbofan engine data set CMAPSS, and the advantage is validated by carrying out a comparison with other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信