ELM-PSO结构在数控车削加工中表面粗糙度和功耗建模中的性能分析

Tiagrajah V. Janahiraman, Nooraziah Ahmad
{"title":"ELM-PSO结构在数控车削加工中表面粗糙度和功耗建模中的性能分析","authors":"Tiagrajah V. Janahiraman, Nooraziah Ahmad","doi":"10.1109/ICIMU.2014.7066649","DOIUrl":null,"url":null,"abstract":"The turning operation in the Computer Numerical Control (CNC) needs optimal machining parameters to achieve higher machining efficiency. The selection of machining parameters is very important to find the best performances in machining process. In this study, two different architectures of particle swarm optimization based extreme learning machine were analyzed for modelling inputs parameters: feed rate, cutting speed and depth of cut to output parameters: surface roughness and power consumption. The data were collected from 15 experiments using carbon steel AISI 1045 which were separated into training and testing dataset. Our experimental results shows that Architecture II is the most outstanding model with mean absolute percentage error (MAPE) of 0.0469 for predicting the training data and 0.204 for predicting the testing data.","PeriodicalId":408534,"journal":{"name":"Proceedings of the 6th International Conference on Information Technology and Multimedia","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance analysis of ELM-PSO architectures for modelling surface roughness and power consumption in CNC turning operation\",\"authors\":\"Tiagrajah V. Janahiraman, Nooraziah Ahmad\",\"doi\":\"10.1109/ICIMU.2014.7066649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The turning operation in the Computer Numerical Control (CNC) needs optimal machining parameters to achieve higher machining efficiency. The selection of machining parameters is very important to find the best performances in machining process. In this study, two different architectures of particle swarm optimization based extreme learning machine were analyzed for modelling inputs parameters: feed rate, cutting speed and depth of cut to output parameters: surface roughness and power consumption. The data were collected from 15 experiments using carbon steel AISI 1045 which were separated into training and testing dataset. Our experimental results shows that Architecture II is the most outstanding model with mean absolute percentage error (MAPE) of 0.0469 for predicting the training data and 0.204 for predicting the testing data.\",\"PeriodicalId\":408534,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Information Technology and Multimedia\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Information Technology and Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIMU.2014.7066649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Information Technology and Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMU.2014.7066649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在数控系统中,车削加工需要最优的加工参数来实现更高的加工效率。在机械加工过程中,加工参数的选择对于寻找最佳的加工性能是非常重要的。在本研究中,分析了基于粒子群优化的两种不同架构的极限学习机,将输入参数:进给速度、切削速度和切削深度建模到输出参数:表面粗糙度和功耗。数据来源于碳钢AISI 1045的15个实验数据,分为训练数据集和测试数据集。我们的实验结果表明,架构II是最突出的模型,预测训练数据的平均绝对百分比误差(MAPE)为0.0469,预测测试数据的平均绝对百分比误差为0.204。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance analysis of ELM-PSO architectures for modelling surface roughness and power consumption in CNC turning operation
The turning operation in the Computer Numerical Control (CNC) needs optimal machining parameters to achieve higher machining efficiency. The selection of machining parameters is very important to find the best performances in machining process. In this study, two different architectures of particle swarm optimization based extreme learning machine were analyzed for modelling inputs parameters: feed rate, cutting speed and depth of cut to output parameters: surface roughness and power consumption. The data were collected from 15 experiments using carbon steel AISI 1045 which were separated into training and testing dataset. Our experimental results shows that Architecture II is the most outstanding model with mean absolute percentage error (MAPE) of 0.0469 for predicting the training data and 0.204 for predicting the testing data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信