HandArch:用于LIBRAS手型识别的深度学习架构

Gabriel Peixoto de Carvalho, André Luiz Brandão, F. Ferreira
{"title":"HandArch:用于LIBRAS手型识别的深度学习架构","authors":"Gabriel Peixoto de Carvalho, André Luiz Brandão, F. Ferreira","doi":"10.5753/wvc.2021.18883","DOIUrl":null,"url":null,"abstract":"Despite the recent advancements in deep learning, sign language recognition persists as a challenge in computer vision due to its complexity in shape and movement patterns. Current studies that address sign language recognition treat hand pose recognition as an image classification problem. Based on this approach, we introduce HandArch, a novel architecture for realtime hand pose recognition from video to accelerate the development of sign language recognition applications. Furthermore, we present Libras91, a novel dataset of Brazilian sign language (LIBRAS) hand configurations containing 91 classes and 108,896 samples. Experimental results show that our approach surpasses the accuracy of previous studies while working in real-time on video files. The recognition accuracy of our system is 99% for the novel dataset and over 95% for other hand pose datasets.","PeriodicalId":311431,"journal":{"name":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HandArch: A deep learning architecture for LIBRAS hand configuration recognition\",\"authors\":\"Gabriel Peixoto de Carvalho, André Luiz Brandão, F. Ferreira\",\"doi\":\"10.5753/wvc.2021.18883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the recent advancements in deep learning, sign language recognition persists as a challenge in computer vision due to its complexity in shape and movement patterns. Current studies that address sign language recognition treat hand pose recognition as an image classification problem. Based on this approach, we introduce HandArch, a novel architecture for realtime hand pose recognition from video to accelerate the development of sign language recognition applications. Furthermore, we present Libras91, a novel dataset of Brazilian sign language (LIBRAS) hand configurations containing 91 classes and 108,896 samples. Experimental results show that our approach surpasses the accuracy of previous studies while working in real-time on video files. The recognition accuracy of our system is 99% for the novel dataset and over 95% for other hand pose datasets.\",\"PeriodicalId\":311431,\"journal\":{\"name\":\"Anais do XVII Workshop de Visão Computacional (WVC 2021)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XVII Workshop de Visão Computacional (WVC 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/wvc.2021.18883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wvc.2021.18883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管最近在深度学习方面取得了进展,但由于其形状和运动模式的复杂性,手语识别仍然是计算机视觉中的一个挑战。目前针对手语识别的研究都将手势识别作为一个图像分类问题。在此基础上,我们引入了HandArch——一种用于实时视频手势识别的新架构,以加速手语识别应用的发展。此外,我们提出了Libras91,这是一个新的巴西手语(LIBRAS)手部配置数据集,包含91个类和108,896个样本。实验结果表明,在实时处理视频文件时,我们的方法的准确性超过了以往的研究。我们的系统对新数据集的识别准确率为99%,对其他手姿数据集的识别准确率超过95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HandArch: A deep learning architecture for LIBRAS hand configuration recognition
Despite the recent advancements in deep learning, sign language recognition persists as a challenge in computer vision due to its complexity in shape and movement patterns. Current studies that address sign language recognition treat hand pose recognition as an image classification problem. Based on this approach, we introduce HandArch, a novel architecture for realtime hand pose recognition from video to accelerate the development of sign language recognition applications. Furthermore, we present Libras91, a novel dataset of Brazilian sign language (LIBRAS) hand configurations containing 91 classes and 108,896 samples. Experimental results show that our approach surpasses the accuracy of previous studies while working in real-time on video files. The recognition accuracy of our system is 99% for the novel dataset and over 95% for other hand pose datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信