基于分块器的尼泊尔语文本情感分析

A. Yajnik, Sabu Lama Tamang
{"title":"基于分块器的尼泊尔语文本情感分析","authors":"A. Yajnik, Sabu Lama Tamang","doi":"10.5121/csit.2023.131406","DOIUrl":null,"url":null,"abstract":"The article represents the Sentiment Analysis (SA) of a Nepali sentence. Skip-gram model is used for the word to vector encoding. In the first experiment the vector representation of each sentence is generated by using Skip-gram model followed by the Multi-Layer Perceptron (MLP) classification and it is observed that the F1 score of 0.6486 is achieved for positive-negative classification with overall accuracy of 68%. Whereas in the second experiment the verb chunks are extracted using Nepali parser and carried out the similar experiment on the verb chunks. F1 score of 0.6779 is observedfor positive -negative classification with overall accuracy of 85%. Hence, Chunker based sentiment analysis is proven to be better than sentiment analysis using sentences.","PeriodicalId":430291,"journal":{"name":"Artificial Intelligence, NLP , Data Science and Cloud Computing Technology","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chunker Based Sentiment Analysis for Nepali Text\",\"authors\":\"A. Yajnik, Sabu Lama Tamang\",\"doi\":\"10.5121/csit.2023.131406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article represents the Sentiment Analysis (SA) of a Nepali sentence. Skip-gram model is used for the word to vector encoding. In the first experiment the vector representation of each sentence is generated by using Skip-gram model followed by the Multi-Layer Perceptron (MLP) classification and it is observed that the F1 score of 0.6486 is achieved for positive-negative classification with overall accuracy of 68%. Whereas in the second experiment the verb chunks are extracted using Nepali parser and carried out the similar experiment on the verb chunks. F1 score of 0.6779 is observedfor positive -negative classification with overall accuracy of 85%. Hence, Chunker based sentiment analysis is proven to be better than sentiment analysis using sentences.\",\"PeriodicalId\":430291,\"journal\":{\"name\":\"Artificial Intelligence, NLP , Data Science and Cloud Computing Technology\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence, NLP , Data Science and Cloud Computing Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2023.131406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence, NLP , Data Science and Cloud Computing Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2023.131406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对一个尼泊尔语句子进行情感分析。Skip-gram模型用于字到向量的编码。在第一个实验中,使用Skip-gram模型生成每个句子的向量表示,然后使用多层感知器(multilayer Perceptron, MLP)分类,观察到正负分类的F1得分为0.6486,总体准确率为68%。而在第二个实验中,使用尼泊尔语解析器提取动词语块,并对动词语块进行了类似的实验。正负分类的F1得分为0.6779,总体准确率为85%。因此,基于Chunker的情感分析被证明比使用句子的情感分析更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chunker Based Sentiment Analysis for Nepali Text
The article represents the Sentiment Analysis (SA) of a Nepali sentence. Skip-gram model is used for the word to vector encoding. In the first experiment the vector representation of each sentence is generated by using Skip-gram model followed by the Multi-Layer Perceptron (MLP) classification and it is observed that the F1 score of 0.6486 is achieved for positive-negative classification with overall accuracy of 68%. Whereas in the second experiment the verb chunks are extracted using Nepali parser and carried out the similar experiment on the verb chunks. F1 score of 0.6779 is observedfor positive -negative classification with overall accuracy of 85%. Hence, Chunker based sentiment analysis is proven to be better than sentiment analysis using sentences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信