B. Rountree, D. Lowenthal, S. Funk, V. Freeh, B. Supinski, M. Schulz
{"title":"大型MPI程序中的约束能耗","authors":"B. Rountree, D. Lowenthal, S. Funk, V. Freeh, B. Supinski, M. Schulz","doi":"10.1145/1362622.1362688","DOIUrl":null,"url":null,"abstract":"Power is now a first-order design constraint in large-scale parallel computing. Used carefully, dynamic voltage scaling can execute parts of a program at a slower CPU speed to achieve energy savings with a relatively small (possibly zero) time delay. However, the problem of when to change frequencies in order to optimize energy savings is NP-complete, which has led to many heuristic energy-saving algorithms. To determine how closely these algorithms approach optimal savings, we developed a system that determines a bound on the energy savings for an application. Our system uses a linear programming solver that takes as inputs the application communication trace and the cluster power characteristics and then outputs a schedule that realizes this bound. We apply our system to three scientific programs, two of which exhibit load imbalance---particle simulation and UMT2K. Results from our bounding technique show particle simulation is more amenable to energy savings than UMT2K.","PeriodicalId":274744,"journal":{"name":"Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"177","resultStr":"{\"title\":\"Bounding energy consumption in large-scale MPI programs\",\"authors\":\"B. Rountree, D. Lowenthal, S. Funk, V. Freeh, B. Supinski, M. Schulz\",\"doi\":\"10.1145/1362622.1362688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power is now a first-order design constraint in large-scale parallel computing. Used carefully, dynamic voltage scaling can execute parts of a program at a slower CPU speed to achieve energy savings with a relatively small (possibly zero) time delay. However, the problem of when to change frequencies in order to optimize energy savings is NP-complete, which has led to many heuristic energy-saving algorithms. To determine how closely these algorithms approach optimal savings, we developed a system that determines a bound on the energy savings for an application. Our system uses a linear programming solver that takes as inputs the application communication trace and the cluster power characteristics and then outputs a schedule that realizes this bound. We apply our system to three scientific programs, two of which exhibit load imbalance---particle simulation and UMT2K. Results from our bounding technique show particle simulation is more amenable to energy savings than UMT2K.\",\"PeriodicalId\":274744,\"journal\":{\"name\":\"Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"177\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1362622.1362688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1362622.1362688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bounding energy consumption in large-scale MPI programs
Power is now a first-order design constraint in large-scale parallel computing. Used carefully, dynamic voltage scaling can execute parts of a program at a slower CPU speed to achieve energy savings with a relatively small (possibly zero) time delay. However, the problem of when to change frequencies in order to optimize energy savings is NP-complete, which has led to many heuristic energy-saving algorithms. To determine how closely these algorithms approach optimal savings, we developed a system that determines a bound on the energy savings for an application. Our system uses a linear programming solver that takes as inputs the application communication trace and the cluster power characteristics and then outputs a schedule that realizes this bound. We apply our system to three scientific programs, two of which exhibit load imbalance---particle simulation and UMT2K. Results from our bounding technique show particle simulation is more amenable to energy savings than UMT2K.