面向华为移动视频准确快速标注挑战的深度卷积神经网络降维结构

Yunlong Bian, Yuan Dong, Hongliang Bai, Bo Liu, Kai Wang, Yinan Liu
{"title":"面向华为移动视频准确快速标注挑战的深度卷积神经网络降维结构","authors":"Yunlong Bian, Yuan Dong, Hongliang Bai, Bo Liu, Kai Wang, Yinan Liu","doi":"10.1109/ICMEW.2014.6890608","DOIUrl":null,"url":null,"abstract":"Big structure of deep Convolutional Neural Networks (CNN) has staggeringly impressive improvement in the Imagenet Large Scale Visual Recognition Challenge (ILSVRC) 2012 and 2013. But only tens of classes are required to be trained in the most real applications. After the deep CNNs are trained in the ILSVRC dataset, efficiently transferring the big and deep structure to a new dataset is a tough problem. In this paper, three algorithms are proposed to implement the transfer, namely fine-tunning of the big structure, normalized Google distance and Wordnet lexical semantic similarity. After experiments are conducted in the Huawei accurate and fast Mobile Video Annotation Challenge (MoVAC) dataset, the fine-tuning algorithm has achieved the best performance in the accuracy and training time.","PeriodicalId":178700,"journal":{"name":"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Reducing structure of deep Convolutional Neural Networks for Huawei Accurate and Fast Mobile Video Annotation Challenge\",\"authors\":\"Yunlong Bian, Yuan Dong, Hongliang Bai, Bo Liu, Kai Wang, Yinan Liu\",\"doi\":\"10.1109/ICMEW.2014.6890608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big structure of deep Convolutional Neural Networks (CNN) has staggeringly impressive improvement in the Imagenet Large Scale Visual Recognition Challenge (ILSVRC) 2012 and 2013. But only tens of classes are required to be trained in the most real applications. After the deep CNNs are trained in the ILSVRC dataset, efficiently transferring the big and deep structure to a new dataset is a tough problem. In this paper, three algorithms are proposed to implement the transfer, namely fine-tunning of the big structure, normalized Google distance and Wordnet lexical semantic similarity. After experiments are conducted in the Huawei accurate and fast Mobile Video Annotation Challenge (MoVAC) dataset, the fine-tuning algorithm has achieved the best performance in the accuracy and training time.\",\"PeriodicalId\":178700,\"journal\":{\"name\":\"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEW.2014.6890608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW.2014.6890608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

大结构深度卷积神经网络(CNN)在2012年和2013年Imagenet大规模视觉识别挑战赛(ILSVRC)中取得了惊人的进步。但是,在大多数实际应用中,只需要几十个课程就可以进行培训。在ILSVRC数据集上训练深度cnn后,如何有效地将大而深的结构转移到新的数据集上是一个难题。本文提出了三种实现迁移的算法,即大结构微调、归一化Google距离和Wordnet词汇语义相似度。在华为精准快速移动视频标注挑战赛(MoVAC)数据集上进行了实验,该微调算法在准确率和训练时间上都取得了最好的成绩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducing structure of deep Convolutional Neural Networks for Huawei Accurate and Fast Mobile Video Annotation Challenge
Big structure of deep Convolutional Neural Networks (CNN) has staggeringly impressive improvement in the Imagenet Large Scale Visual Recognition Challenge (ILSVRC) 2012 and 2013. But only tens of classes are required to be trained in the most real applications. After the deep CNNs are trained in the ILSVRC dataset, efficiently transferring the big and deep structure to a new dataset is a tough problem. In this paper, three algorithms are proposed to implement the transfer, namely fine-tunning of the big structure, normalized Google distance and Wordnet lexical semantic similarity. After experiments are conducted in the Huawei accurate and fast Mobile Video Annotation Challenge (MoVAC) dataset, the fine-tuning algorithm has achieved the best performance in the accuracy and training time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信