基于自适应Gabor小波的人脸表情特征提取方法

B. Oshidari, Babak Nadjar Araabi
{"title":"基于自适应Gabor小波的人脸表情特征提取方法","authors":"B. Oshidari, Babak Nadjar Araabi","doi":"10.1109/PIC.2010.5688016","DOIUrl":null,"url":null,"abstract":"Feature extraction is an important and challenging phase of facial expression recognition problem. In this paper, an effective feature extraction method is proposed. Our facial feature representation method is based on an adaptive Gabor wavelet transform. In this method, we used a fuzzy controller for tuning the orientation parameter of filter. This filter can detect the most significant edges of facial images. Furthermore, the proposed adaptive filter improves the drawbacks of conventional Gabor filters. Nearest neighbor and multi-class Support Vector Machine (SVM) classifiers are applied for classification task. Experimental results on Japanese Female Facial Expression (JAFFE) database show that the proposed method can provide high recognition rate. The main advantage of proposed method over other methods is its flexibility.","PeriodicalId":142910,"journal":{"name":"2010 IEEE International Conference on Progress in Informatics and Computing","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An effective feature extraction method for facial expression recognition using adaptive Gabor wavelet\",\"authors\":\"B. Oshidari, Babak Nadjar Araabi\",\"doi\":\"10.1109/PIC.2010.5688016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature extraction is an important and challenging phase of facial expression recognition problem. In this paper, an effective feature extraction method is proposed. Our facial feature representation method is based on an adaptive Gabor wavelet transform. In this method, we used a fuzzy controller for tuning the orientation parameter of filter. This filter can detect the most significant edges of facial images. Furthermore, the proposed adaptive filter improves the drawbacks of conventional Gabor filters. Nearest neighbor and multi-class Support Vector Machine (SVM) classifiers are applied for classification task. Experimental results on Japanese Female Facial Expression (JAFFE) database show that the proposed method can provide high recognition rate. The main advantage of proposed method over other methods is its flexibility.\",\"PeriodicalId\":142910,\"journal\":{\"name\":\"2010 IEEE International Conference on Progress in Informatics and Computing\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Progress in Informatics and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIC.2010.5688016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Progress in Informatics and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC.2010.5688016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

特征提取是面部表情识别的一个重要且具有挑战性的阶段。本文提出了一种有效的特征提取方法。我们的人脸特征表示方法是基于自适应Gabor小波变换。在该方法中,我们使用模糊控制器来调整滤波器的方向参数。该滤波器可以检测出人脸图像中最重要的边缘。此外,所提出的自适应滤波器改善了传统Gabor滤波器的缺点。将最近邻分类器和多类支持向量机(SVM)分类器用于分类任务。在日本女性面部表情数据库(JAFFE)上的实验结果表明,该方法具有较高的识别率。与其他方法相比,该方法的主要优点是其灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An effective feature extraction method for facial expression recognition using adaptive Gabor wavelet
Feature extraction is an important and challenging phase of facial expression recognition problem. In this paper, an effective feature extraction method is proposed. Our facial feature representation method is based on an adaptive Gabor wavelet transform. In this method, we used a fuzzy controller for tuning the orientation parameter of filter. This filter can detect the most significant edges of facial images. Furthermore, the proposed adaptive filter improves the drawbacks of conventional Gabor filters. Nearest neighbor and multi-class Support Vector Machine (SVM) classifiers are applied for classification task. Experimental results on Japanese Female Facial Expression (JAFFE) database show that the proposed method can provide high recognition rate. The main advantage of proposed method over other methods is its flexibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信