社交网络隐私保护数据发布

S. Bourahla, Y. Challal
{"title":"社交网络隐私保护数据发布","authors":"S. Bourahla, Y. Challal","doi":"10.1109/CIS.2017.00063","DOIUrl":null,"url":null,"abstract":"The proliferation of social networks allowed creating a big quantity of data which contains rich private information that should be preserved. In this paper we consider social networks that are represented as labeled bipartite graphs where each node can have a set of information representing its profile. We propose a solution that allows publishing the social network graphs while preserving the privacy of data. We identify a critical \"safety partitioning condition\" which has provable guarantees to prevent variety of privacy attacks. We demonstrate the utility of our solution by studying the accuracy with which complex queries can be answered over the anonymized data.","PeriodicalId":304958,"journal":{"name":"2017 13th International Conference on Computational Intelligence and Security (CIS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Social Networks Privacy Preserving Data Publishing\",\"authors\":\"S. Bourahla, Y. Challal\",\"doi\":\"10.1109/CIS.2017.00063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proliferation of social networks allowed creating a big quantity of data which contains rich private information that should be preserved. In this paper we consider social networks that are represented as labeled bipartite graphs where each node can have a set of information representing its profile. We propose a solution that allows publishing the social network graphs while preserving the privacy of data. We identify a critical \\\"safety partitioning condition\\\" which has provable guarantees to prevent variety of privacy attacks. We demonstrate the utility of our solution by studying the accuracy with which complex queries can be answered over the anonymized data.\",\"PeriodicalId\":304958,\"journal\":{\"name\":\"2017 13th International Conference on Computational Intelligence and Security (CIS)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th International Conference on Computational Intelligence and Security (CIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2017.00063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2017.00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

社交网络的激增产生了大量的数据,这些数据包含了丰富的私人信息,这些信息应该被保存下来。在本文中,我们考虑用标记二部图表示的社交网络,其中每个节点可以有一组表示其概况的信息。我们提出了一个解决方案,允许发布社交网络图,同时保护数据的隐私。我们确定了一个关键的“安全分区条件”,它具有可证明的保证,以防止各种隐私攻击。我们通过研究在匿名数据上回答复杂查询的准确性来展示我们的解决方案的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Social Networks Privacy Preserving Data Publishing
The proliferation of social networks allowed creating a big quantity of data which contains rich private information that should be preserved. In this paper we consider social networks that are represented as labeled bipartite graphs where each node can have a set of information representing its profile. We propose a solution that allows publishing the social network graphs while preserving the privacy of data. We identify a critical "safety partitioning condition" which has provable guarantees to prevent variety of privacy attacks. We demonstrate the utility of our solution by studying the accuracy with which complex queries can be answered over the anonymized data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信