Calibrank:通过多模态学习排序的有效激光雷达相机外部校准

Xiannong Wu, Chi Zhang, Yuehu Liu
{"title":"Calibrank:通过多模态学习排序的有效激光雷达相机外部校准","authors":"Xiannong Wu, Chi Zhang, Yuehu Liu","doi":"10.1109/ICIP40778.2020.9190991","DOIUrl":null,"url":null,"abstract":"Precise and online LiDAR-camera extrinsic calibration is one of the prerequisites of multi-modal data fusion for autonomous perception. The existing 6-DoF pose regression networks take majority effort on coarse-to-fine training strategy to gradually approach the global minimum. However, with limited computing resources, the optimal pose parameters seem unreachable. Moreover, recent research on neural network interpretability reveals that learning-based pose regression is nothing but the interpolation with most relevant samples. Motivated by this notion, we propose to solve the calibration problem in a retrieval way. Concretely, the learning-to-rank pipeline is introduced for ranking the top n relevant poses in the gallery set, which is then fused in to the final prediction. To better explore the pose relevance between ground truth samples, we further propose an exponential mapping from parametric space to the relevance space. The superiority of the proposed method is validated and demonstrated in the comparative and ablative experimental analysis.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Calibrank: Effective Lidar-Camera Extrinsic Calibration By Multi-Modal Learning To Rank\",\"authors\":\"Xiannong Wu, Chi Zhang, Yuehu Liu\",\"doi\":\"10.1109/ICIP40778.2020.9190991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precise and online LiDAR-camera extrinsic calibration is one of the prerequisites of multi-modal data fusion for autonomous perception. The existing 6-DoF pose regression networks take majority effort on coarse-to-fine training strategy to gradually approach the global minimum. However, with limited computing resources, the optimal pose parameters seem unreachable. Moreover, recent research on neural network interpretability reveals that learning-based pose regression is nothing but the interpolation with most relevant samples. Motivated by this notion, we propose to solve the calibration problem in a retrieval way. Concretely, the learning-to-rank pipeline is introduced for ranking the top n relevant poses in the gallery set, which is then fused in to the final prediction. To better explore the pose relevance between ground truth samples, we further propose an exponential mapping from parametric space to the relevance space. The superiority of the proposed method is validated and demonstrated in the comparative and ablative experimental analysis.\",\"PeriodicalId\":405734,\"journal\":{\"name\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP40778.2020.9190991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9190991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

精确、在线的激光雷达相机外部标定是实现自主感知多模态数据融合的先决条件之一。现有的六自由度姿态回归网络主要采用粗到精的训练策略,逐步逼近全局最小值。然而,在有限的计算资源下,最优姿态参数似乎无法实现。此外,最近对神经网络可解释性的研究表明,基于学习的姿态回归只不过是对最相关样本的插值。基于这一思想,我们提出用检索的方式来解决校准问题。具体来说,引入了学习排序管道,用于对图库集中的前n个相关姿势进行排序,然后将其融合到最终的预测中。为了更好地探索地面真值样本之间的姿态相关性,我们进一步提出了从参数空间到相关空间的指数映射。对比和烧蚀实验分析验证了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calibrank: Effective Lidar-Camera Extrinsic Calibration By Multi-Modal Learning To Rank
Precise and online LiDAR-camera extrinsic calibration is one of the prerequisites of multi-modal data fusion for autonomous perception. The existing 6-DoF pose regression networks take majority effort on coarse-to-fine training strategy to gradually approach the global minimum. However, with limited computing resources, the optimal pose parameters seem unreachable. Moreover, recent research on neural network interpretability reveals that learning-based pose regression is nothing but the interpolation with most relevant samples. Motivated by this notion, we propose to solve the calibration problem in a retrieval way. Concretely, the learning-to-rank pipeline is introduced for ranking the top n relevant poses in the gallery set, which is then fused in to the final prediction. To better explore the pose relevance between ground truth samples, we further propose an exponential mapping from parametric space to the relevance space. The superiority of the proposed method is validated and demonstrated in the comparative and ablative experimental analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信