多簇数据划分算法的仿真研究

Chen Yu, D. Marinescu, H. Siegel, J. Morrison
{"title":"多簇数据划分算法的仿真研究","authors":"Chen Yu, D. Marinescu, H. Siegel, J. Morrison","doi":"10.1109/CCGRID.2007.13","DOIUrl":null,"url":null,"abstract":"Recently we proposed algorithms for concurrent execution on multiple clusters [11]. In this case, data partitioning is done at two levels; first, the data is distributed to a collection of heterogeneous parallel systems with different resources and startup time, then, on each system the data is evenly partitioned to the available nodes. In this paper, we report on a simulation study of the algorithms.","PeriodicalId":278535,"journal":{"name":"Seventh IEEE International Symposium on Cluster Computing and the Grid (CCGrid '07)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Simulation Study of Data Partitioning Algorithms for Multiple Clusters\",\"authors\":\"Chen Yu, D. Marinescu, H. Siegel, J. Morrison\",\"doi\":\"10.1109/CCGRID.2007.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently we proposed algorithms for concurrent execution on multiple clusters [11]. In this case, data partitioning is done at two levels; first, the data is distributed to a collection of heterogeneous parallel systems with different resources and startup time, then, on each system the data is evenly partitioned to the available nodes. In this paper, we report on a simulation study of the algorithms.\",\"PeriodicalId\":278535,\"journal\":{\"name\":\"Seventh IEEE International Symposium on Cluster Computing and the Grid (CCGrid '07)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh IEEE International Symposium on Cluster Computing and the Grid (CCGrid '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGRID.2007.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Symposium on Cluster Computing and the Grid (CCGrid '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2007.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

最近我们提出了在多集群上并行执行的算法[11]。在这种情况下,数据分区在两个级别上完成;首先,将数据分发到具有不同资源和启动时间的异构并行系统集合中,然后在每个系统上将数据均匀地分区到可用节点。在本文中,我们报告了一个算法的仿真研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Simulation Study of Data Partitioning Algorithms for Multiple Clusters
Recently we proposed algorithms for concurrent execution on multiple clusters [11]. In this case, data partitioning is done at two levels; first, the data is distributed to a collection of heterogeneous parallel systems with different resources and startup time, then, on each system the data is evenly partitioned to the available nodes. In this paper, we report on a simulation study of the algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信