基于视觉的实验室防静电手套及防静电检测系统

Jyoti Madake, Varunavi Shettigar, Shruti A. Vedpathak, S. Bhatlawande, S. Shilaskar
{"title":"基于视觉的实验室防静电手套及防静电检测系统","authors":"Jyoti Madake, Varunavi Shettigar, Shruti A. Vedpathak, S. Bhatlawande, S. Shilaskar","doi":"10.1109/CINE56307.2022.10037543","DOIUrl":null,"url":null,"abstract":"The usage of ESD safety equipment is a growing issue while manipulating sensitive electronic devices and equipment. We propose an ESD equipment detection model to monitor lab workers for the presence of ESD protective gear. The proposed approach is realized with the help of a camera and a CPU. Using computer vision and machine learning techniques, including feature identification and description using SIFT, we can identify the ESD protection safety measures. The feature vector is optimized with K-Means and principal component analysis. Decision Trees and SVM classifiers are used to achieve accurate classification with these refined feature vectors. The suggested approach is a highly effective way of determining whether or not laboratory staff take appropriate ESD safety measures.","PeriodicalId":336238,"journal":{"name":"2022 5th International Conference on Computational Intelligence and Networks (CINE)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vision-Based System to Detect Antistatic Gloves and Antistatic ESD Protection in Laboratory\",\"authors\":\"Jyoti Madake, Varunavi Shettigar, Shruti A. Vedpathak, S. Bhatlawande, S. Shilaskar\",\"doi\":\"10.1109/CINE56307.2022.10037543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The usage of ESD safety equipment is a growing issue while manipulating sensitive electronic devices and equipment. We propose an ESD equipment detection model to monitor lab workers for the presence of ESD protective gear. The proposed approach is realized with the help of a camera and a CPU. Using computer vision and machine learning techniques, including feature identification and description using SIFT, we can identify the ESD protection safety measures. The feature vector is optimized with K-Means and principal component analysis. Decision Trees and SVM classifiers are used to achieve accurate classification with these refined feature vectors. The suggested approach is a highly effective way of determining whether or not laboratory staff take appropriate ESD safety measures.\",\"PeriodicalId\":336238,\"journal\":{\"name\":\"2022 5th International Conference on Computational Intelligence and Networks (CINE)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th International Conference on Computational Intelligence and Networks (CINE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CINE56307.2022.10037543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Computational Intelligence and Networks (CINE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINE56307.2022.10037543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在操作敏感的电子设备和设备时,使用ESD安全设备是一个日益严重的问题。我们提出了一个ESD设备检测模型,以监测实验室工作人员的ESD防护装备的存在。该方法是在相机和CPU的帮助下实现的。利用计算机视觉和机器学习技术,包括特征识别和SIFT描述,可以识别出ESD防护的安全措施。利用k均值和主成分分析对特征向量进行优化。决策树和支持向量机分类器利用这些改进的特征向量实现准确的分类。建议的方法是确定实验室工作人员是否采取适当的ESD安全措施的一种非常有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vision-Based System to Detect Antistatic Gloves and Antistatic ESD Protection in Laboratory
The usage of ESD safety equipment is a growing issue while manipulating sensitive electronic devices and equipment. We propose an ESD equipment detection model to monitor lab workers for the presence of ESD protective gear. The proposed approach is realized with the help of a camera and a CPU. Using computer vision and machine learning techniques, including feature identification and description using SIFT, we can identify the ESD protection safety measures. The feature vector is optimized with K-Means and principal component analysis. Decision Trees and SVM classifiers are used to achieve accurate classification with these refined feature vectors. The suggested approach is a highly effective way of determining whether or not laboratory staff take appropriate ESD safety measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信