本地等级距离

Radu Tudor Ionescu
{"title":"本地等级距离","authors":"Radu Tudor Ionescu","doi":"10.1109/SYNASC.2013.36","DOIUrl":null,"url":null,"abstract":"Researchers have developed a wide variety of methods for string data, that can be applied with success in different fields such as computational biology, natural language processing and so on. Such methods range from clustering techniques used to analyze the phylogenetic trees of different organisms, to kernel methods used to identify authorship or native language from text. Results of such methods are not perfect and can always be improved. Some of these methods are based on a distance or similarity measure for strings, such as Hamming, Levenshtein, Kendall-tau, rank distance, or string kernel. This paper aims to introduce a new distance measure, termed Local Rank Distance (LRD), inspired from the recently introduced Local Patch Dissimilarity for images. Designed to conform to more general principles and adapted to DNA strings, LRD comes to improve over state of the art methods for phylogenetic analysis. This paper shows two applications of LRD. The first application is the phylogenetic analysis of mammals. Experiments show that phylogenetic trees produced by LRD are better or at least similar to those reported in the literature. The second application is to identify native language of English learners. By working at character level, the proposed method is completely language independent and theory neutral. In conclusion, LRD can be used as a general approach to measure string similarity, despite being designed for DNA.","PeriodicalId":293085,"journal":{"name":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Local Rank Distance\",\"authors\":\"Radu Tudor Ionescu\",\"doi\":\"10.1109/SYNASC.2013.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Researchers have developed a wide variety of methods for string data, that can be applied with success in different fields such as computational biology, natural language processing and so on. Such methods range from clustering techniques used to analyze the phylogenetic trees of different organisms, to kernel methods used to identify authorship or native language from text. Results of such methods are not perfect and can always be improved. Some of these methods are based on a distance or similarity measure for strings, such as Hamming, Levenshtein, Kendall-tau, rank distance, or string kernel. This paper aims to introduce a new distance measure, termed Local Rank Distance (LRD), inspired from the recently introduced Local Patch Dissimilarity for images. Designed to conform to more general principles and adapted to DNA strings, LRD comes to improve over state of the art methods for phylogenetic analysis. This paper shows two applications of LRD. The first application is the phylogenetic analysis of mammals. Experiments show that phylogenetic trees produced by LRD are better or at least similar to those reported in the literature. The second application is to identify native language of English learners. By working at character level, the proposed method is completely language independent and theory neutral. In conclusion, LRD can be used as a general approach to measure string similarity, despite being designed for DNA.\",\"PeriodicalId\":293085,\"journal\":{\"name\":\"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2013.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2013.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

研究人员已经开发了各种各样的字符串数据方法,这些方法可以成功地应用于计算生物学、自然语言处理等不同领域。这些方法包括用于分析不同生物系统发育树的聚类技术,以及用于从文本中识别作者身份或母语的核方法。这些方法的结果并不完美,而且总是可以改进的。其中一些方法基于字符串的距离或相似性度量,如Hamming、Levenshtein、Kendall-tau、秩距离或字符串核。本文旨在引入一种新的距离度量,称为局部秩距离(LRD),其灵感来自于最近引入的图像局部斑块不相似度。LRD的设计符合更普遍的原则,并适应于DNA序列,它改进了目前最先进的系统发育分析方法。本文介绍了LRD的两种应用。第一个应用是哺乳动物的系统发育分析。实验表明,LRD生成的系统发育树与文献报道的系统发育树更好或至少相似。第二个应用是识别英语学习者的母语。通过在字符层面上进行工作,该方法完全独立于语言,理论中立。总之,尽管LRD是为DNA设计的,但它可以作为测量字符串相似性的一般方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local Rank Distance
Researchers have developed a wide variety of methods for string data, that can be applied with success in different fields such as computational biology, natural language processing and so on. Such methods range from clustering techniques used to analyze the phylogenetic trees of different organisms, to kernel methods used to identify authorship or native language from text. Results of such methods are not perfect and can always be improved. Some of these methods are based on a distance or similarity measure for strings, such as Hamming, Levenshtein, Kendall-tau, rank distance, or string kernel. This paper aims to introduce a new distance measure, termed Local Rank Distance (LRD), inspired from the recently introduced Local Patch Dissimilarity for images. Designed to conform to more general principles and adapted to DNA strings, LRD comes to improve over state of the art methods for phylogenetic analysis. This paper shows two applications of LRD. The first application is the phylogenetic analysis of mammals. Experiments show that phylogenetic trees produced by LRD are better or at least similar to those reported in the literature. The second application is to identify native language of English learners. By working at character level, the proposed method is completely language independent and theory neutral. In conclusion, LRD can be used as a general approach to measure string similarity, despite being designed for DNA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信