使用SLM识别特定主题的有影响力用户

M. Shalaby, Ahmed Rafea
{"title":"使用SLM识别特定主题的有影响力用户","authors":"M. Shalaby, Ahmed Rafea","doi":"10.1109/ACLING.2015.24","DOIUrl":null,"url":null,"abstract":"Social Influence can be described as the ability to have an effect on the thoughts or actions of others. The objective of this research is to investigate the use of language in detecting the influential users in a specific topic on Twitter. From a collection of tweets matching a specified query, we want to detect the influential users from the tweets' text. The study investigates the Arabic Egyptian dialect and if it can be used for detecting the author's influence. Using a Statistical Language Model, we found a correlation between the users' average Retweets counts and their tweets' perplexity, consolidating the hypothesis that SLM can be trained to detect the highly retweeted tweets. However, the use of the perplexity for identifying influential users resulted in low precision values. The simplistic approach carried out did not produce good results. There is still work to be done for the SLM to be used for identifying influential users.","PeriodicalId":404268,"journal":{"name":"2015 First International Conference on Arabic Computational Linguistics (ACLing)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Identifying the Topic-Specific Influential Users Using SLM\",\"authors\":\"M. Shalaby, Ahmed Rafea\",\"doi\":\"10.1109/ACLING.2015.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social Influence can be described as the ability to have an effect on the thoughts or actions of others. The objective of this research is to investigate the use of language in detecting the influential users in a specific topic on Twitter. From a collection of tweets matching a specified query, we want to detect the influential users from the tweets' text. The study investigates the Arabic Egyptian dialect and if it can be used for detecting the author's influence. Using a Statistical Language Model, we found a correlation between the users' average Retweets counts and their tweets' perplexity, consolidating the hypothesis that SLM can be trained to detect the highly retweeted tweets. However, the use of the perplexity for identifying influential users resulted in low precision values. The simplistic approach carried out did not produce good results. There is still work to be done for the SLM to be used for identifying influential users.\",\"PeriodicalId\":404268,\"journal\":{\"name\":\"2015 First International Conference on Arabic Computational Linguistics (ACLing)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 First International Conference on Arabic Computational Linguistics (ACLing)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACLING.2015.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 First International Conference on Arabic Computational Linguistics (ACLing)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACLING.2015.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

社会影响力可以描述为对他人的思想或行为产生影响的能力。本研究的目的是调查语言在Twitter上检测特定主题中有影响力用户的使用情况。从匹配指定查询的tweet集合中,我们希望从tweet的文本中检测有影响力的用户。本研究考察了阿拉伯埃及方言,以及是否可以用它来检测作者的影响。使用统计语言模型,我们发现用户的平均转发数与他们的推文困惑度之间存在相关性,巩固了SLM可以被训练来检测高转发推文的假设。然而,使用困惑度来识别有影响力的用户导致精度值较低。这种简单化的做法没有产生好的结果。要利用SLM确定有影响力的用户,仍有许多工作要做。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying the Topic-Specific Influential Users Using SLM
Social Influence can be described as the ability to have an effect on the thoughts or actions of others. The objective of this research is to investigate the use of language in detecting the influential users in a specific topic on Twitter. From a collection of tweets matching a specified query, we want to detect the influential users from the tweets' text. The study investigates the Arabic Egyptian dialect and if it can be used for detecting the author's influence. Using a Statistical Language Model, we found a correlation between the users' average Retweets counts and their tweets' perplexity, consolidating the hypothesis that SLM can be trained to detect the highly retweeted tweets. However, the use of the perplexity for identifying influential users resulted in low precision values. The simplistic approach carried out did not produce good results. There is still work to be done for the SLM to be used for identifying influential users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信