高斯-伯努利深度玻尔兹曼机

Kyunghyun Cho, T. Raiko, A. Ilin
{"title":"高斯-伯努利深度玻尔兹曼机","authors":"Kyunghyun Cho, T. Raiko, A. Ilin","doi":"10.1109/IJCNN.2013.6706831","DOIUrl":null,"url":null,"abstract":"In this paper, we study a model that we call Gaussian-Bernoulli deep Boltzmann machine (GDBM) and discuss potential improvements in training the model. GDBM is designed to be applicable to continuous data and it is constructed from Gaussian-Bernoulli restricted Boltzmann machine (GRBM) by adding multiple layers of binary hidden neurons. The studied improvements of the learning algorithm for GDBM include parallel tempering, enhanced gradient, adaptive learning rate and layer-wise pretraining. We empirically show that they help avoid some of the common difficulties found in training deep Boltzmann machines such as divergence of learning, the difficulty in choosing right learning rate scheduling, and the existence of meaningless higher layers.","PeriodicalId":376975,"journal":{"name":"The 2013 International Joint Conference on Neural Networks (IJCNN)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"134","resultStr":"{\"title\":\"Gaussian-Bernoulli deep Boltzmann machine\",\"authors\":\"Kyunghyun Cho, T. Raiko, A. Ilin\",\"doi\":\"10.1109/IJCNN.2013.6706831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study a model that we call Gaussian-Bernoulli deep Boltzmann machine (GDBM) and discuss potential improvements in training the model. GDBM is designed to be applicable to continuous data and it is constructed from Gaussian-Bernoulli restricted Boltzmann machine (GRBM) by adding multiple layers of binary hidden neurons. The studied improvements of the learning algorithm for GDBM include parallel tempering, enhanced gradient, adaptive learning rate and layer-wise pretraining. We empirically show that they help avoid some of the common difficulties found in training deep Boltzmann machines such as divergence of learning, the difficulty in choosing right learning rate scheduling, and the existence of meaningless higher layers.\",\"PeriodicalId\":376975,\"journal\":{\"name\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"134\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2013.6706831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2013.6706831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 134

摘要

在本文中,我们研究了一个我们称之为高斯-伯努利深度玻尔兹曼机(GDBM)的模型,并讨论了训练模型的潜在改进。GDBM是在高斯-伯努利受限玻尔兹曼机(GRBM)的基础上,通过添加多层二值隐藏神经元构造而成的,适用于连续数据。研究了对GDBM学习算法的改进,包括并行回火、增强梯度、自适应学习率和分层预训练。我们的经验表明,它们有助于避免在训练深度玻尔兹曼机器时发现的一些常见困难,如学习的发散,选择正确的学习率调度的困难,以及无意义的更高层的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gaussian-Bernoulli deep Boltzmann machine
In this paper, we study a model that we call Gaussian-Bernoulli deep Boltzmann machine (GDBM) and discuss potential improvements in training the model. GDBM is designed to be applicable to continuous data and it is constructed from Gaussian-Bernoulli restricted Boltzmann machine (GRBM) by adding multiple layers of binary hidden neurons. The studied improvements of the learning algorithm for GDBM include parallel tempering, enhanced gradient, adaptive learning rate and layer-wise pretraining. We empirically show that they help avoid some of the common difficulties found in training deep Boltzmann machines such as divergence of learning, the difficulty in choosing right learning rate scheduling, and the existence of meaningless higher layers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信